Mint: Cost-Efficient Tracing with All Requests
Collection via Commonality and Variability Analysis

Haiyu Huang Cheng Chen Kunyi Chen
huanghy95@mail2.sysu.edu.cn wu.cc@alibaba-inc.com chenkunyi.cky@alibaba-inc.com
Sun Yat-sen University Alibaba Group Alibaba Group

Guangzhou, China

Pengfei Chen*
chenpf7@mail.sysu.edu.cn
Sun Yat-sen University
Guangzhou, China

Yilun Wang
wangylun6@mail2.sysu.edu.cn
Sun Yat-sen University
Guangzhou, China

Abstract

Distributed traces contain valuable information but are of-
ten massive in volume, posing a core challenge in tracing
framework design: balancing the tradeoff between preserv-
ing essential trace information and reducing trace volume.
To address this tradeoff, previous approaches typically used
a ‘1 or 0’ sampling strategy: retaining sampled traces while
completely discarding unsampled ones. However, based on
an empirical study on real-world production traces, we dis-
cover that the ‘1 or 0’ strategy actually fails to effectively
balance this tradeoff.

To achieve a more balanced outcome, we shift the strategy
from the ‘1 or 0’ paradigm to the ‘commonality + variability’
paradigm. The core of ‘commonality + variability’ paradigm
is to first parse traces into common patterns and variable
parameters, then aggregate the patterns and filter the param-
eters. We propose a cost-efficient tracing framework, Mint,
which implements the ‘commonality + variability’ paradigm
on the agent side to enable all requests capturing. Our exper-
iments show that Mint can capture all traces and retain more
trace information while optimizing trace storage (reduced

* Pengfei Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands.

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0698-1/25/03...$15.00
https://doi.org/10.1145/XXXXXXXXXXXX

Hangzhou, China

Guangba Yu
yugb5@mail2.sysu.edu.cn
Sun Yat-sen University
Guangzhou, China

Huxing Zhang
huxing.zhx@alibaba-inc.com
Alibaba Group
Hangzhou, China

Hangzhou, China

Zilong He
hezlong@mail2.sysu.edu.cn
Sun Yat-sen University
Guangzhou, China

Qi Zhou
jackson.zhoug@alibaba-inc.com
Alibaba Group
Hangzhou, China

to an average of 2.7%) and network overhead (reduced to an
average of 4.2%). Moreover, experiments also demonstrate
that Mint is lightweight enough for production use.

ACM Reference Format:

Haiyu Huang, Cheng Chen, Kunyi Chen, Pengfei Chen*, Guangba
Yu, Zilong He, Yilun Wang, Huxing Zhang, and Qi Zhou. 2025.
Mint: Cost-Efficient Tracing with All Requests Collection via Com-
monality and Variability Analysis. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS °25), March
30-April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 Introduction

As software systems grow larger and more complex [58], dis-
tributed tracing has become a critical infrastructure, provid-
ing visibility into systems’ end-to-end runtime behavior [29].
Tracing frameworks like Jaeger [24], OpenTelemetry [43],
and Zipkin [1] have been widely adopted by major inter-
net companies [60]. The trace data they generate, which
visualizes the end-to-end paths of requests through service
instances, has proven to be extremely helpful for profiling
systems [20], detecting anomalies [32, 42, 59], and diagnos-
ing failures [15, 16, 35, 57].

Although distributed traces are helpful, they are often
voluminous [60], making their collecting, storing, and pro-
cessing extremely expensive, especially in production envi-
ronments [29]. For instance, as shown in Fig. 1, a large-scale
e-commerce system in Alibaba [5] generates approximately
18.6-20.5 pebibytes (PBs) of traces per day. Therefore, reduc-
ing tracing overhead and efficiently preserving the valuable
information within trace data at an acceptable cost is a cru-
cial and significant task [28].

In current tracing systems, the de facto practice to han-
dle this task is through trace sampling (i.e., retaining only

https://orcid.org/0009-0000-6146-2493
https://orcid.org/0000-0003-0972-6900
https://orcid.org/0000-0001-6195-9088
https://orcid.org/0000-0001-7963-082X
https://orcid.org/0000-0001-9262-8652
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

21,0001
20,000-M«\/\/
19,000+

18,000+

Trace Volume (TB)

Feb.21 Feb.25 Mar.01 Mar.06 Mar. 11 Mar.16 Mar.20

Figure 1. A tracing system in Alibaba generates 18.6-20.5
PBs of traces per day between Feb. 21 and Mar. 20, 2024.

a portion of traces) [17, 21, 23, 25, 28, 29, 52, 60]. The main
workflow is to first determine which traces should be sam-
pled, and then retain the sampled traces while completely
discarding the unsampled ones (we call it the ‘1 or 0’ strat-
egy). Depending on the timing of the sampling decision and
the sampling rules, these methods are typically categorized
as head sampling [25, 52], tail sampling [17, 23, 28, 29], and
the recently introduced retroactive sampling [60].

However, our research revealed significant shortcomings
of the prevailing trace sampling techniques utilising the ‘1 or
0’ strategy, as evidenced by an empirical trace study (§ 2.2)
conducted on real-world systems. (1) The drawback of
completely discarding unsampled traces. While current
sampling methods try to retain valuable traces through cer-
tain rules, our findings indicate that those discarded traces
may also be queried by Site reliability engineers (SREs) be-
cause the characteristics of the traces needing analysis are
often unpredictable. This is evidenced by the observation
that the current sampling strategy results in a query miss rate
of approximately 27.17% in our study. Trace query failure is a
potential source of impediment to the SRE diagnosis process.
(2) Lack of effective compression of individual trace
volumes. Previous trace reduction methods only reduce the
number of traces without lightweighting each individual
trace. However, each trace can contain more detailed infor-
mation than debug-level log [52], making it necessary to
compress traces based on their characteristics. On the other
hand, general-purpose compression tools [2-4] and previ-
ously proposed log compression techniques [33, 33, 50] are
ineffective for trace compression because traces have a topo-
logical data structure. These methods fail to fully utilize trace
characteristics, resulting in poor compression performance
(details shown in § 5.3).

To address the above limitations, we shift the strategy of
trace overhead reduction from the ‘1 or 0’ paradigm to the
‘commonality + variability’ paradigm which parses trace
data into common patterns and variable parameters, and
processes them individually. Through our empirical study
(§ 2.2.3), we find that the widely existing commonality and
variability in traces can be leveraged to preserve more trace
information at a lower cost. By leveraging commonality (e.g.,
constructing common patterns), we can cluster and store
the basic information of all traces at a low cost. Moreover,

Huang et al.

by utilizing variability (e.g., extracting parameters), we can
better filter and efficiently record the differing parts.

To implement this, we develop Mint, a cost-efficient dis-
tributed tracing framework that captures all requests and
retains near-full trace information. The workflow of Mint
is to first analyze commonality and variability at two levels
within traces to parse them into patterns and parameters.
Then it mounts metadata of all traces onto their correspond-
ing patterns using a low-cost method (i.e., Bloom Filter [53]),
and filters and retains valuable information from the variable
parameters. Mint does not directly discard the unsampled
traces, under the ‘commonality + variability’ paradigm, the
difference between handling sampled and unsampled traces
is whether the variability part is sent to the tracing back-
end. For unsampled traces, only the basic information (i.e.,
commonality part) of them is preserved at a low cost, which
is sufficient for analysis. For sampled traces, their full in-
formation (i.e., both of commonality and variability part) is
retained, and their volume is reduced by compression. As a
practical tool, Mint reduces traces on the agent generation
side, thus saving both network bandwidth and storage space.

We conducted extensive experiments to verify Mint’s ef-
fectiveness and performance. Experiments show that Mint
reduces total trace storage overhead to 2.7% and network
overhead to 4.2%, while recording all requests. For practi-
cal application, Mint has been deployed in the production
environment of Alibaba for over two months, successfully
reducing trace volume while capturing all requests.

In summary, our study makes the following contributions.

e We conduct an empirical study on traces in real-world
systems and obtain three observations that can facili-
tate the trace reduction task.

e We point out the limitations of current trace reduction
methods based on the ‘1 or 0’ paradigm, and introduce
the ‘commonality + variability’ paradigm to retain
more trace information at a lower cost.

e We propose a practical distributed tracing framework
named Mint, which applies the ‘commonality + vari-
ability’ paradigm on the agent side, enabling cost-
efficient retention of all requests.

e We conduct extensive experiments to evaluate Mint
and demonstrate its effectiveness in reducing trace
volume while capturing all requests. We also assess
Mint’s efficiency, showing that it is a practical tool.

2 Background and Motivation
2.1 Related Work

Distributed tracing. Distributed tracing is crucial for pro-
viding observability and maintaining highly dynamic mi-
croservice systems. Magpie [6], X-trace [13], Dapper [52],
Pinpoint [41], and Pivot [36] are classic distributed tracing
frameworks that have introduced essential end-to-end ob-
servability into distributed systems. OpenTelemetry [43]

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

offers a unified, high-performance tracing API and SDK, and
has established the OTLP [46] standard to standardize the
format of trace data and its transmission between services.
Jaeger [24] and Zipkin [1] are also popular open-source trac-
ing frameworks widely adopted in the industry. Utilizing
end-to-end observability from traces, previous works have
performed trace analysis in areas such as performance pro-
filing [20, 38, 51], anomaly detection[32, 42, 59], and failure
diagnosis [15, 16, 35, 57]. As trace volume increases, previ-
ous studies have also proposed various methods for trace
reduction [25, 27, 29], with mainstream approaches includ-
ing head sampling [25, 52], tail sampling [17, 23, 28, 29], and
retroactive sampling [60].

Log-specific compressor. Log data is the cousin of dis-
tributed traces, but lacks topology structure like traces. Due
to the high redundancy of logs, many methods have been
proposed to compress logs. LogArchive [8], Cowic [31], and
MLC [12] compress logs by extracting features from log data.
Some log compression methods [10, 34, 54-56] use a log
parser to separate logs and process headers and variables
independently for further compression. LogZip [34] and
RoughLogs [37] compress logs by building a model to iden-
tify redundancies. CLP [50] parses logs into schemas, storing
variables as dictionary and non-dictionary. LogGrep [54]
structures and organizes log data into fine-grained units by
exploiting both static and runtime patterns. However, due to
the significant differences in format and structure between
distributed traces and logs [52], directly applying log com-
pression methods to traces does not yield ideal results (as
shown in our experimental results in § 5.3).

2.2 Empirical Study on Traces in Industry

Distributed tracing is immensely helpful for maintaining
software systems. However, as shown in Fig. 1, the signifi-
cant overhead it introduces cannot be overlooked [29, 60].
To better leverage trace characteristics for improving trace
overhead reduction, we conducted an empirical study on in-
dustrial traces from real-world systems at Alibaba. Alibaba is
a large commercial cloud service provider, and the traces we
collected are from systems deployed on over 1 million nodes
and involving more than 20,000 microservices, we believe
such a scale of samples can effectively represent traces in
large-scale industrial microservices systems. Our study aims
to answer the following research questions (RQs):

RQ1: What kind of overhead do traces introduce?

RQ2: Can existing strategies effectively reduce trace over-
head while retaining valuable information?

RQ3: What characteristics in trace data can we leverage?

2.2.1 RQ1: Tracing Overhead. To better understand the
overhead caused by tracing, we first investigate the lifecy-
cle of traces. The lifecycle of traces consists of four main
stages [9, 29]. @) Init trace: the trace life cycle begins when
a request is initiated (e.g., when a user submits a form on

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

o Sy B2 Trecing Part

98 * _r [__]Business Part
,, cgl ——

B R

T 22l g

> =«

Og ‘_:’8

e R — o | T f

B \\ §o

o

. =S5 @ ||

= o

SVCA SvcB SvcC SveD SvcE
(a) Tracesintroduce stor age overhead

swcA sicB scC swcD swcE
(b) Tracesintroduce network over head

Figure 2. Storage overhead and bandwidth increment caused
by tracing in 5 services from Alibaba.

a website), and this triggers the creation of a new unique
trace ID. (2) Generate trace data: as the request progresses,
each time it passes through related applications, those ap-
plications equipped with tracing client libraries generate
trace data to capture the events triggered (e.g., alerts) and
state data (e.g., error codes or delays). This information is
recorded in key-value format within the core components
of the trace, known as ‘span’ [47].

(3 Report trace data: at each application node, the trace
agent intercepts, collects, serializes, and transmits trace data
generated on that node to a centralized trace backend via
the network [60]. @ Store trace data: after reported to the
backend, trace data from different application nodes with the
same trace ID is joined together and stored in a persistent
storage device for subsequent analysis. From the life cycle,
we can see that stage (3) involves network overheads, and
stage (@ involves storage overheads.

To further explore the impact of these overheads, we in-
vestigated the top 5 services in Alibaba with the largest trace
volume. We collected and tallied the storage overhead of
these services’ traces generated from February 21 to March
20, 2024, as well as the bandwidth increment caused by re-
porting traces during this period, as shown in Fig. 2.

Fig. 2 (a) shows the storage overhead caused by traces,
revealing that these services spent an average of 7,639 GB
on storing traces per day. Considering the storage cost of
$0.50/GiB per month, these services would require an aver-
age monthly expenditure of $114.59k to fully store the trace
data. Fig. 2 (b) demonstrates that adopting tracing introduces
up to 102 MB/min of additional bandwidth between nodes,
significantly affecting latency-sensitive application traffic. It
is evident that both storage and network overhead caused
by tracing are substantial, which can severely impact the
scalability and robustness of software systems.

Finding 1. Traces introduce both costly storage over-
head and unignorable network overhead.

Implication 1. To reduce both overheads, we imple-
ment trace reduction earlier on the agent side.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

—2— Miss Rate in Region A [-
-0~ Miss Rate in Region B

S
=)
P A

Miss Rate

Feb.21 Feb.25 Mar.01 Mar.06 Mar.11 Mar.16 Mar. 20

Figure 3. The miss rate in two different regions from Alibaba
per day between Feb. 21 and Mar. 20, 2024.

2.2.2 RQ2: Limitations of Existing Work. To address the
critical trace overhead reduction problem, prior work has
made some attempts [17, 23, 25, 28, 29, 52, 60]. However, our
investigation reveals that these methods still fail to resolve
the trade-off between retaining necessary trace information
and reducing overhead to a reasonable level, primarily due
to the following two limitations.

The drawback of completely discard traces that are
not sampled. Previous trace reduction methods have been
based on a ‘1 or 0’ strategy, meaning they retain the full
information of sampled traces while completely discarding
traces that are not sampled. However, this strategy can result
in the loss of essential information because some traces that
need to be analyzed cannot be determined until the analysis
is performed. Take a real-world case in Alibaba as an example:
on Mar. 25, 2024, analysts needed to analyze requests that
occurred on Mar. 21, with particular trace_ids over a period
of time, which cannot be known in advance when generating
trace data four days earlier. When analysts query traces that
were not sampled but are necessary for analysis, they receive
no results. We investigated the proportion of traces that
analysts were unable to retrieve due to querying unsampled
traces in Alibaba over 30 days, referred to as the miss rate.
During this period, Alibaba employed a sampling strategy
that combined OpenTelemetry’s head sampling [44] and tail
sampling [48]. The results, as shown in Fig. 3, indicate that
the average miss rate for trace queries at Alibaba over the
past 30 days was 27.17%, indicating that a significant number
of traces that need to be analyzed were filtered out due to
sampling. This motivates us to retain essential information
from the unsampled traces in a cost- efficient manner, rather
than just discarding them.

Lack of effective compression of individual trace
volumes. The ‘1 or 0’ sampling strategy used by previous
methods have another limitation: for sampled traces, all their
original data is preserved in raw format. This means that
prior methods only reduce the number of traces without
lightweighting each trace itself [25, 29, 52]. However, traces
can be detailed and produced at high volume [60]. At major
internet companies (e.g., Google [52], Facebook [26], etc.),

Huang et al.

traces are typically more detailed than debug-level logging,
and each traced request generates several MBs of tracing
data [60]. We analyzed the distribution of the volume of
trace data generated by each traced request in Alibaba over
a day, experiment result shows that more than 11% of traces
exceed 1.2 MB. This motivates us to design compression
algorithms tailored to trace data characteristics, aiming not
only to reduce the number of traces but also to lightweight
the volume of each trace, thus better reducing trace overhead.

Finding 2. Existing trace reduction methods employ-
ing a ‘1 or 0’ strategy fail to adequately address the
tradeoff between preserving necessary trace infor-
mation and reducing overhead.

Implication 2. We should design a better trace infor-
mation retention method tailored to the characteris-
tics of trace data: (I) For unsampled traces, retain es-
sential information in a cost-efficient manner rather
than discard them entirely. (2) For sampled traces,
effective compression should be applied instead of
storing the full information in raw format.

2.2.3 RQ3: Trace Data Characteristics. To investigate
the characteristics of traces more effectively, we first need to
understand the typical structure of trace data. As depicted
in Fig. 4, each trace forms a tree-like structure composed of
a series of spans linked according to their invocation rela-
tionships [22]. Each span represents a single unit of work
and typically consists of three parts [47]: (1) Topology part:
which includes information indicating the position of the
span within the entire trace. (2) Metadata part: containing
predefined basic information automatically obtained and
attached to the span by the client library. (3) Attributes
part: where users can include additional detailed informa-
tion about the invocation process, such as debuggable or
identifiable data (e.g., alert logs, SQL query content, etc.).
This information is added to the span through attributes
or events using tracing instrumentation statements [45], as
illustrated in Fig. 4. After investigating 3,419,503 traces gen-
erated in Alibaba within a day, we found that commonality
and variability are widely present in trace data, and they can
be observed in the following levels.

Inter-trace level. Although there are numerous traces,
many of them are triggered by the same type of requests [22]
(e.g., multiple queries for the same product information by
different users, resulting in traces belonging to the ‘prod-
uct query’ type). Due to the identical task logic, traces of
the same type exhibit strong commonality (i.e., they pass
through the same sequence of services in the same order).
However, due to different parameters and runtime states,
there is variability in the specific information on each span.

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

tracing instrumentation statements

manage.py: tracer = trace.get_tracer("tracer") ‘I
manage.py: tracer.start_as_current_span("patch")
trace_ae61 L get_product
manage.py: span.set_attribute("sql", f'INSERT INTO .
" | {table_name} ({columns}) VALUES ({values})") ‘pi‘()iilgltg‘tge
span 1
| span it !
| S S
! Topology || span_id | parentid | kind } | get_reviews, get_details
|
| Part serv]
| ‘L - 747 1 727 - ji”fr 77777)y \\ reviews-03 details-01
! —r— 71— \ l span 2 : I span 3 |
:Meta Data : trace_id | spanName | duration |startTime |] ===
| Part i} ae61 patch 5769 170469 | \ manage_
| |\ - ————-—————————4 | \ ratings
| f——=—~~~~=7—~=7—7=7777"7 | N
I Attributes|' "attributes.threadname": "scheduling-1" | \:ﬂim_gs_-ﬂz
I part : "attributes.tablename": "patch_inventory" | | span 4 :
A "attributes.sql": "INSERT INTO patch_ | o St=====
i inventory (city_id, rb_id, customer id) .." | //
,,,,,,,,, e

Figure 4. An example of trace and span structure.

Table 1. The statistics of occurrence and proportion of com-
monality of traces from three services in company A (#
denotes occurrence and % denotes proportion).

Level ‘ Service A ‘ Service B ‘ Service C
v T % | # % | # %

Inter-trace | 145,701 48.20 | 169,701 56.14 | 104,101 34.44
Inter-span | 3,382,701 35.31 | 5,302,701 45.34 | 2,448,701 25.55

Inter-span level. Since a span represents a unit of work,
spans that execute the same work logic will have a similar
structure [59]. For instance, if two spans are generated by the
code block shown in Fig. 4’s manage.py, they will possess the
same keys and their values will also follow a similar pattern.
To illustrate, for the ‘attributes.sql’ field, as it originates from
the same statement, its value will adhere to the pattern ‘IN-
SERT INTO xx (xx VALUES xx)’. Variability can be observed
in the change of parameters within regular expressions (e.g.,
‘city_id, rb_id, customer_id’ of span 4 in Fig. 4).

To further investigate the frequency of commonality in
the two aforementioned levels, we calculated the occurrence
and proportion of pairs with commonality (i.e., two traces
or spans that have common pattern) to the total number of
pairs (i.e., any two different traces or spans) in each level.
Table 1 presents the results of our analysis of traces generated
within a week across three services. As shown, inter-trace
pairs with commonality account for about 34% - 56% of all
inter-trace pairs, while inter-span pairs with commonality
make up around 25% - 45% of all inter-span pairs.

Finding 3. Commonality and variability widely exist
among pairs of traces and spans.

Implication 3. We can leverage these commonal-
ity and variability to reduce trace overhead through
gathering common patterns and efficiently recording
the differential parts.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

3 Techniques
3.1 Overview

Facilitated by the above observations, we propose Mint, a
tracing framework that aims to tackle the current tradeoff
between preserving essential trace information and reducing
trace volume by shifting the ‘1 or 0’ paradigm to the ‘com-
monality + variability’ paradigm on the agent side. Our goal
is to allow practitioners to capture all requests and retain
near-full trace information in a cost-efficient way.

Tracing walkthrough. We first describe the tracing walk-
through (i.e., the entire process of generating and saving
trace data) at a high level using Mint, as shown in Fig. 5.

(D Trace Data Generating. When a request carrying a
trace ID passes through an application node, trace data (i.e.,
spans) are generated by Mint’s client API, similar to existing
frameworks. However, instead of immediately recording or
reporting the spans, Mint redirects them to Span Parser.

(@ Inter-Span Level Parsing. Span Parser analyzes the
commonality and variability at span level to parse the in-
coming span into a pattern and parameters (the blue part
and the red part in Fig. 5). The pattern updates span Pattern
Library and is encoded into a pattern ID, while parameters
are temporarily stored in Params Buffer on the agent.

(@ Inter-Trace Level Parsing. As a single request may
traverse different applications on the same node, generat-
ing multiple spans, these spans form a tree-like structure
based on their call relationships, we call it a sub-trace (i.e., a
segment of a trace on the same node). Trace Parser then lever-
ages the commonality and variability between sub-traces to
find the most similar pattern in the topology Pattern Library
for the incoming sub-trace, marked as the matched template.
The metadata (e.g., trace ID) of the coming sub-trace is then
mounted on the matched template using a Bloom Filter and
stored on the agent.

@ Basic Information Uploading. Through the above
two parsers, the pattern and basic information of each trace
data are cost-effectively stored on the agent side via the
Pattern Library and Bloom Filter. Mint agent periodically
uploads this information to backend to ensure the basic infor-
mation of all traces is preserved. As for the detailed parame-
ters temporarily stored in the Params Buffer, Mint decides
whether to emit the parameters to backend based on whether
the trace they belong to is marked as sampled.

(® Key Traces Sampling. Mint employs two samplers:
the Symptom Sampler monitors the Params Buffer, marking
traces with abnormal values (e.g., status code 502) or outliers
(e.g., unusually large duration values) as sampled traces; the
Edge-Case Sampler monitors the Pattern Library, marking
traces with rare execution paths as sampled traces.

(© Parameters Uploading. Once a trace is marked as
sampled on an agent, all parameters of this trace distributed
across different agents are emitted to the backend through
communication between agents, ensuring trace coherence.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands. Huang et al.
| " OGenerate . Redirect ——————\ @Parse_ pattern LN Euu_ _______________ |
o edire X /)
_______________ - | ub Trace izy
| =E | trace_id: ae61 1 Params Buffer | _____ e . ﬂ | Topo Pattern Mount ||
| A N | span_td:d5b7c750 , i Params A -) Matc /, Library Meta Data ||
pps wit| | parent_id: ea B el s e e I B SN —_———————
L Mine | code.func: java-hearbeat | : : Span Pattern Library : |
| Client APIs ' S9kquery: select *fromA| | |
| ren s Iduratmn 57 | <hearbeat>) ! SZJ;S3 s1 @4-‘ I
| function.name: : ae6l <4> -~ : 53>
| | com.qihoo.finance. traj]'c <t+7> | . |
| | core, ﬁeethtch .config.F | \ code.func: java-<*> |
I « reeswitchEslConfig I > 2 sql.query: select * from <*> I
Mint ! 000 i Soymptlom duration: 50 Edge-Case @ Fp{um/
| S S I v & a |periodical- |
| Agent @ Upload - L
S (DUR PR =) H lﬂ‘l‘iﬁt/ic_‘ulln _________ -
Commu with
Other Agents Backend]
Figure 5. An overview of Mint’s tracing walkthrough.
. Clustering & _Pattern Attribute Span string values as follows:
Offline Extraction Parsers Patterns
I~ "~ — - B
I |LCS(s1, 52)|
| _ B
| /N\O9! 8(s1.52) = (1)

Figure 6. The offline stage of span parser.

3.2 Inter-Span Level Parsing

Once spans are generated, Mint parses them into common
patterns and variable parameters, storing them separately.
Thus it can reduce tracing overhead by aggregating patterns
and selectively retaining only part of parameters. The span
parsing process involves the following stages:

3.2.1 Offline Stage: Warming up Span Parser. We first
randomly sample m (5,000 in our implementation) raw spans
generated on the node over a recent period to build and
warm up the parser offline. This offline stage helps achieve
acceptable performance in the early stages of online parsing,
mitigating cold start issues. Notably, once Mint is running
stably, it is not sensitive to the early random sampling.

Fig. 6 shows the offline construction process of the span
parser. The core idea is to train a parser for each attribute
of the span and then combine different attribute patterns to
form a complete span pattern.

Clustering and pattern extracting. Since different at-
tributes have different semantics, to speed up the parsing
stage, we train a separate parser for each attribute to avoid
meaningless comparisons between different semantics. To
implement this, we first cluster and extract patterns for each
attribute based on its data type:

For attributes with string values, we use the longest com-
mon subsequence (LCS) to compute the similarity between

max(|sy], |52|)’

where s; and s; are tokenized strings (using words as tokens
in our implementation), and |- | denotes the number of tokens
in a string sequence. For all possible values of the same string-
type attribute in sampled spans, we aggregate values with
similarity above a threshold (0.8 in our implementation) to
form clusters C = {Cy, ..., Cp }. For each cluster C;, we extract
the shortest regular expression that can represent all strings
in the cluster, which serves as the pattern P; for that cluster.

For attributes with numeric values, we use a bucketing
approach based on exponential intervals. We first select a
precision parameter « (0.5 in our implementation). For each
numeric value d, we store it in a bucket B; with index i =

[logy(d)-l, where y = ¢, Thus values in bucket B; fall

1-a
within the interval (y'~?, y']. Specifically, values in bucket By
fall within (0, 1]. This approach clusters numeric values into
buckets B = {Bi, ..., B, }, with each bucket B; represented by
the interval pattern (lower;, upper;].
Parsers building. Following the steps above, we extracted
a series of patterns P = { Py, ..., P, } for each attribute A;. Mint

uses these patterns to construct a parser P; for A;. (1) For nu-
meric attributes, $; is a fixed mapping formula i = [logy(x)-‘
that determines which pattern each parsed value d corre-
sponds to. (2) For string attributes, we use a prefix tree to
store all patterns (i.e., regular expressions). Since different
patterns can share several prefix tokens, their paths may
overlap. This reduces the storage overhead of patterns and
improves matching efficiency during the online phase.
Patterns combination. Mint combines patterns of differ-
ent attributes that appear together to form a span pattern,
and assigns it a pattern ID (generates a UUID as pattern ID
in our implementation). For example, if a span has two at-
tributes, A; and A,, and the pattern P;; of A; always appears

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

(7 duration:31 R 7 TR
i ‘ ! Online
\ sakquery: select *from A | | seect * from <+ | Y
Pattern lerary
Raw Span =1 =1 Pattern
A Y Parse I 2 [
. Match 1
Attribute —< | | ﬂ I p
Parsers e cee I @l | - arams
,----,—:,:,--"-,-:,:,:,-- 1 ~=" Y Update ""121" 3
Attribute | (27, 81] [select * from, | 1 X b I
Vector | _t4] t,,FA?,,JJ 1 3 s

Figure 7. The online stage of span parser.

with the pattern P,3 of A;, then SP = [Pyq, Ps3] is a span
pattern. Mint store these span patterns in Pattern Library.

3.2.2 Online Stage: Matching and Parsing. When users
employ Mint for system tracing, Mint performs online pars-
ing on newly generated raw spans.

Hierarchical attribute parsing. As shown in Fig. 7, the
core of the online parsing process is Hierarchical Attribute
Parsing (HAP). Mint parses each attribute of the incoming
span in parallel. For each attribute: (1) it finds the matching
pattern using the corresponding attribute parser (i.e., search-
ing on the prefix tree or calculated through the mapping
formula); (2) it uses the matched pattern as the common part
and extracts the variable part based on the pattern. For string
attributes, variables are extracted using regular expressions,
while for numeric attributes, the difference from the inter-
val’s lower bound is calculated. If a new span pattern appears
during the online stage (e.g., due to a system change), the
corresponding parser updates to include the new pattern.
We emphasize that the HAP process is highly parallel to
meet the low-latency requirements at the online stage since
different attribute parsers operate independently.

Span pattern mapping. After parsing each attributes
of the incoming span, Mint combines the parsed attribute
patterns and matches the resulting span patterns with those
in Pattern Library. If a consistent pattern is found, it returns
the corresponding pattern ID. If not, it adds the new pattern
to Pattern Library and assigns a new pattern ID, allowing
Pattern Library to update based on the latest data.

Through the above steps, Mint parses raw spans into pat-
terns and parameters. Patterns are aggregated and stored in
Pattern Library, while parameters are temporarily stored in
Params Buffer until they are either transmitted or discarded.

3.3 Inter-Trace Level Parsing

Sub-Trace construction. After span parsing, Mint agent
links spans with the same trace ID by their parent IDs shown
in Fig. 4, forming a sub-trace.

Since a Mint agent operates on an application node rather
than the backend, its view is limited to the current node.
Therefore, Mint is designed to analyze the topology of trace
segments (i.e., sub-traces) on the same node in real-time,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

e o U N S S

| Span Y Sub-Trace Pattern \
Span Pattern | Pattern ID |\ [ble6 — {ek35, mx7v}, ek35 — { p8sz}] |
|
http_method: POST IL N
1 i
e Ir ek35 mx7v 7

L N 7

code.func: java-<*>]

sql.query: select * from <*>| ¥ _Su_b-;l'r_ncf N ag6l

Figure 8. Mint uses a sub-trace pattern to store the topology
information of a sub-trace. It also uses a Bloom Filter to
efficiently store the trace metadata for each sub-trace pattern.

rather than cross-node topology. This design prevents fre-
quent waiting and interactions between agents, ensuring
low latency for online tracing.

Pattern extracting. For an incoming sub-trace, Mint en-
codes its topology information into a vector that captures the
order and hierarchy of spans in the sub-trace as its pattern.
Each dimension represents a parent-child relationship. For
example, the encoded vector for the sub-trace in Fig. 8 is
[ble6 — {ek35, mx7v}, ek35 — {p8sz}]. It’s important to note
that each element in the sub-trace pattern is a span pattern
ID, which corresponds to a span pattern. In other words, the
sub-trace pattern includes both the topology information
and the span contents information, as shown in Fig. 8.

Matching or updating. For an incoming sub-trace’s pat-
tern, Mint searches the Topo Pattern Library for an exact
match. If a match is found, it is used as the matched pattern.
If not, the pattern is added to the Topo Pattern Library as
the matched pattern. By aggregating patterns, the topology
information of traces with the same topology pattern only
needs to be stored once.

Metadata Mounting. When querying, users typically
request trace information using trace metadata (e.g., trace
ID). Therefore, we need to record the matching relationship
between trace metadata and its associated pattern. Mint at-
taches a Bloom Filter to each sub-trace pattern, storing the
metadata of all traces belonging to that pattern, as shown
on the right side of Fig. 8. A Bloom Filter is a highly space-
efficient probabilistic data structure based on binary com-
pression [53], which is used to test whether an element is a
member of a set. By using Bloom Filters, Mint can determine
which patterns a trace belongs to with low storage cost and
high query efficiency. While Bloom Filters might falsely in-
dicate that a trace belongs to a pattern, they will never miss
a trace that does belong, ensuring trace coherence. Bloom
Filter’s false positives problem can be alleviated through
upstream-downstream verification across multiple agents.

3.4 Data Reporting

We reiterate that through the above two levels of parsing,
Mint divides the trace data into three parts stored on the
agent side: (1) span patterns and sub-trace patterns stored
in Pattern Library; (2) trace metadata for retrieval stored in
Bloom Filters and mounted on the corresponding sub-trace

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

patterns; (3) variable parameters temporarily stored in Param
Buffer. We now explain how Mint agents filter and upload
this information to backend for storage.

One of Mint’s core design principles is to avoid completely
discarding any trace, unlike the ‘1 or 0’ paradigm. There-
fore, Mint agents periodically upload the full Pattern Library
and Bloom Filters to the backend. This ensures that users
can query and retrieve information for every trace without
missing any one of them. We emphasize that due to widely
existing commonality, millions of traces typically have only
hundreds of patterns. As a result, the cost of storing patterns
is significantly lower than storing raw trace data (approxi-
mately 0.5% in our experiment).

For variable parameters, Mint determines whether to send
them to backend based on the importance of their associated
traces. If a trace is marked as sampled, Mint sends all variable
parameters distributed across nodes to the backend. Thus
Mint backend can use parameters and patterns to reconstruct
the complete information of sampled traces.

Sampling rules. Sampling rules determine which trace
information should be fully retained. Mint is compatible with
existing sampling rules. Users can adopt head sampling by
randomly marking some traces as sampled when requests are
generated. Alternatively, they can mark all traces as sampled
initially and filter them at the backend to apply tail sampling.

Additionally, Mint provides two samplers designed for
‘commonality + variability’ paradigm, offering more com-
prehensive sampling. Similar to retroactive sampling [60],
Mint’s samplers perform biased sampling at the agent side.
However, Mint goes a step further by targeting not only
symptomatic traces but also traces with rare execution paths.
The design details of Mint’s two samplers are shown in § 4.2.

4 Implementation

Mint comprises several components, including multiple mint-
agents and mint-collectors distributed on application hosts, a
unified mint-backend with a distributed trace storage engine,
and a frontend for query and visualization. Fig. 9 illustrates
the implementation architecture of Mint.

4.1 Mint Agent

We implemented mint-agent in ~ 2.5KLOC of Java. The mint-
agent supports various trace protocols (e.g., OpenTeleme-
try [43], Zipkin [1], and Jaeger [24]) because Mint’s subse-
quent parsing operations are decoupled from raw trace data
generation. This allows it to support different protocols by
changing the corresponding SDK (by default, we use the
OpenTelemetry [43] protocol in our implementation).
Pattern Library. Each mint-agent allocates and maintains
a Pattern Library in shared memory to store trace patterns
and metadata stored in Bloom Filters. When the system is
stable, the number of span and topology patterns converges,
so the storage space for patterns does not increase. When the

Huang et al.
Ingress Egress A [W] Query ®
i i 4 Trace
iR e | |Appreion Xrvice f L‘"’”‘"’ Mint-backend) Storage
L 2 —— [t BRI ~E
(———) R;{;”:’i’h'l_o_ -~ _O — 0' Approxi:
=V .
Host O ¢ D § - ;erg—e l_+_ —V— | mate trace
Pattern Library || Params Buffer § '_0_;_00_;_00_| Exact
G Lt DD
W | (R e J

0 Common Pattern Part D Variable Parameter Part ¢ Metadata stored in Bloom Filter

<> Tracepoint —s Collectors D report all patierns and bloom . Backend notifies hosts to report all
Sfilters @ ively report sampled); 's of the sampled trace.

Figure 9. Implementation of Mint and use Mint to capture
and query for traces.

system changes, developers trigger Mint’s reconstruct inter-
face to rebuild the patterns since previous ones may become
outdated. Bloom Filters grow with the number of traces, so
Mint pre-allocates a fixed-size buffer (default is 4 KB) for
each Bloom filter. When the buffer is full, the Bloom filter
is reported and reset. We implement the Bloom Filter using
the Guava library [19], setting the ‘falsePositiveProbability’
parameter to 0.01 by default.

Params Buffer. Mint-agent reserves a fixed-size buffer
(default 4 MB) in shared memory to temporarily store trace
parameters. Params Buffer operates as a FIFO queue, with
parameters from the same trace ID grouped into one block.
Newly generated trace parameters blocks are added to the
end of the queue. When the buffer is full, the block at the
front of the queue is popped out.

4.2 Mint Collector

We implemented mint-collector in ~ 0.8KLOC of Java. The
mint-collector periodically (every 1 minute by default) reports
patterns in Pattern Library and immediately reports Bloom
Filters once they reach their size limit (on average, every
1.2 seconds). For parameters stored in the Params Buffer,
Mint uses two samplers designed for the ‘commonality +
variability’ paradigm to filter and decide whether to sample
a trace (it can also accommodate other sampling rules like
head sampling or tail sampling). Once a trace is marked as
sampled, Mint notifies collectors on all hosts through the
backend to check and report all parameters of that trace,
ensuring trace coherence.

Symptom Sampler. Symptom Sampler targets sympto-
matic traces by monitoring variable parameters in the Param
Buffer and sampling the anomalies. For numerical parame-
ters, it samples outliers exceeding the 95th percentile (P95).
For string parameters, it samples values containing abnormal
words, with the list of abnormal words being user-defined.

Edge-Case Sampler. Edge-Case Sampler targets traces
with rare execution paths. It monitors the topology patterns
in Pattern Library to track the number of traces matched
to each topo pattern, increasing the sampling probability

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

Span Details X

Tracel Start Time 2024
03a07565212e1d42ac0f9actabdf89de 06-18 18:09:58

Total response
time 19.681699ms Application mall-gateway

Interface /components/api/vi/mall/<*>
Name =

P 10.0.0.161 Q
Start Time 2024-06-18 18:09:58.696

End Time 2024-06-18 18:09:58.715 =
b T = spanld c098a3b783c23b46 it
— — —_— - parentld 0

m— 2

Event Co

ditional Information Metrics. L <>
http.method POST

>
: =]
filter Ql® O

http.params level=Tuserinfo=<*> @

Jcomponents/apifv1jmall/product — 241968 m http.route Jcomponent:
mall-gateway SERVER [o

mall/

- MallController.productEntry — 3 root.serviceid ggx

t
reconnectCount (9,27]

21 POST [componentsfapifvijmall/produ

Figure 10. An example of querying an unsampled trace to

get an approximate trace, variables are masked by ‘<*>’ and
numbers are bucket-mapped.

for less common traces. For example, if 99% of traces follow
pattern A and 1% follow pattern B, the Edge-Case Sampler
will prioritize sampling traces that follow pattern B.

4.3 Mint Backend and Querier

Mint-backend is implemented with a distributed trace storage
engine and a querier. The distributed trace storage engine
supports parallel and large-scale storage and querying of
reported trace data. Notably, to make Mint’s storage engine
compatible with existing tracing frameworks, we design
the data format of patterns (i.e., approximate traces) and
parameters to be similar to traditional traces, and this storage
method does not require decompression during queries.

Query Logic. When a user queries Mint for trace infor-
mation using trace metadata (e.g., trace ID), Mint first checks
each Bloom Filter for the presence of the trace’s metadata.
If found, it indicates that the pattern corresponding to the
Bloom Filter is a segment (i.e., sub-trace) of the trace. Mint
then reconstructs these sub-traces into a complete approxi-
mate trace based on the matching relationships between the
start and end operations of different segments. If the trace
is marked as unsampled, the querier directly returns the ap-
proximate trace. If the trace is sampled, the exact parameters
of the approximate trace have been sent to the backend. Us-
ing these parameters and the approximate trace, the exact
information of the queried trace can be reconstructed and
returned. An example of querying an unsampled trace to get
an approximate trace is shown as Fig 10.

5 Evaluation
We now conduct experiments to evaluate Mint, focusing on
the following research questions.

e How effective is Mint in reducing trace data?
e How effective is Mint in retaining more trace informa-
tion (all traces capturing)?

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

e How much does Mint’s commonality and variability
analysis contribute to trace compression?
e What are the performance and scalability of Mint?

Benchmarks. We used three distributed systems to eval-
uate Mint. Two of them are open-source microservice bench-
marks, which are widely used in previous trace analysis
studies [23, 57]. The third is a real-world production mi-
croservice system from Alibaba, which allows us to better
evaluate Mint in a production environment.

OnlineBoutique (OB) [18] is a web-based e-commerce ap-
plication with 10 microservices implemented in various pro-
gramming languages, communicating via gRPC. TrainTicket
(TT) [14] offers a railway ticketing service involving 45 ser-
vices that communicate through synchronous REST invo-
cations and asynchronous messaging. We deployed the On-
lineBoutique and TrainTicket applications on a Kubernetes
platform with 12 virtual machines. Each VM has an 8-core
2.10GHz CPU, 16GB of memory, and runs on Ubuntu 18.04.

Baselines and implementation. To better evaluate the
effectiveness of Mint, we compare it with four baseline trac-
ing approaches, which are either widely used tracing frame-
works or novel methods proposed in recent years.

(D OpenTelemetry under head-sampling (OT-Head) [438].
In our implementation, we instrument all benchmark ap-
plications with the OpenTelemetry agent and collect trace
data using the OpenTelemetry Collector, which is stored in
Grafana Tempo and persisted to Elasticsearch [11]. Unless
otherwise specified, we set the head sampling rate to 5%.

@ OpenTelemetry under tail-sampling (OT-Tail) [44].
OpenTelemetry’s tail sampling strategy functions like a user-
defined filter. To ensure its effectiveness, we tag all injected
abnormal requests in the benchmark with an ‘is_abnormal’
tag, allowing tail sampling to filter traces based on this tag.

(3 Hindsight [60]. Hindsight is a tracing framework that
implements retroactive sampling. Since Hindsight is compat-
ible with OpenTelemetry, we configured the OpenTelemetry
agent with Hindsight triggers on every application node.
We used the same default parameters and configurations as
specified in the Hindsight paper [60].

@ Sieve [23]. Sieve is an online tail sampling approach
that uses robust random cut forest (RRCF) to sample uncom-
mon traces. We implemented it by using the OpenTelemetry
agent and collector to generate traces and redirect them to
the Sieve sampler for filtering and retention.

5.1 Effectiveness in Reducing Trace Data

In this experiment, we evaluate how effectively Mint can
reduce trace data. We measured the network and storage
overhead of Mint and four baseline tracing frameworks on
OnlineBoutique and TrainTicket benchmarks. Additionally,
we used OpenTelemetry with a 100% sampling rate (OT-Full)
as a reference for no trace reduction. To ensure fairness, we
tag 5% of the traffic injected into the benchmarks with an

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

‘is_abnormal’ label and make all biased sampling methods to
sample based on this field, this allows each tracing system
to capture a consistent number of traces.

We measured the network overhead by monitoring the
network bandwidth between application nodes and the trac-
ing backend during the tracing process. To evaluate storage
overhead, we measured the size of the trace data ultimately
stored in Elasticsearch [11] by the tracing backend. To assess
the performance under different traffic loads, we conducted
multiple experiments at varying request throughputs.

Fig. 11 shows the results of our experiment. We can see
that Mint significantly reduces trace overhead in both net-
work and storage compared to the baseline methods. Here is
a further analysis of the results:

OT-Head: Head sampling randomly selects and retains
sampled traces at the start of the trace’s lifecycle. Therefore,
its network and storage overhead is reduced to the sampling
rate proportion (5%) compared to OT-Full.

OT-Tail & Sieve: Tail sampling decides and removes un-
sampled traces at the backend. As a result, it cannot reduce
network overhead and remains similar to OT-Full, but it can
reduce storage overhead to around the anomaly rate.

Hindsight: Hindsight performs biased sampling early
at the agent side, which reduces both network and storage
overhead. However, due to the need to transmit breadcrumbs,
its network overhead is slightly higher than head sampling.

Mint: Mint reduces traces at the agent side, lowering both
network and storage overhead. Additionally, Mint optimizes
trace storage by compressing traces based on commonality,
further reducing trace data size. On average, Mint reduces
storage overhead to 2.7% and network overhead to 4.2%.

5.2 Effectiveness in Retaining More Trace
Information

In this experiment, we demonstrate that Mint can capture
all requests and retain more trace information compared
to current tracing frameworks with the same amount of
trace data. We measure the quality of the trace information
preserved by the tracing frameworks through two aspects:
@ Specific query response ability: We evaluate the ability
of tracing frameworks to return the trace information in
response to user queries, to determine if they can depict spe-
cific requests. (2) Analytical value of trace data: We assess
the impact of the trace data produced by the tracing frame-
works on downstream trace-based root cause analysis (RCA)
methods, evaluating analytical value of captured trace data.

When evaluating the effectiveness of retained trace in-
formation, we ensure fairness by controlling the size of the
trace data saved by tracing frameworks to be consistent.
We set the budget trace reduction rate to 5%, meaning each
framework’s final saved trace data is 5% of the original size.

Query Response Ability. To reflect real-world user query
behavior for trace data, we randomly selected three subsys-
tems from Alibaba for continuous monitoring over a period

Huang et al.

Table 2. Choice of injected faults and downstream methods

Injected Fault Types
CPU exhaustion, memory exhaustion,
network delays, code exceptions, error returns
Trace-based RCA Methods
MicroRank [57], TraceRCA [30], TraceAnomaly [35]

Table 3. Comparison of the effects of different tracing frame-
works in downstream root cause analysis’s accuracy.

Bench- ‘ RCA ‘ Tracing Framework
mark | Method "G He,d OT-Tail Sieve Hindsight Mint
MicroRank 0.1563 0.2188 0.2813 0.2188 0.6563
OB TraceAnomaly 0.2813 0.2500 0.3750 0.3438 0.7037
TraceRCA 0.2500 0.2500 0.3438 0.2188 0.6563
MicroRank 0.0714 0.1429 0.1786 0.1786 0.5357
TT TraceAnomaly 0.1786 0.1786 0.2857 0.3214 0.5714
TraceRCA 0.1429 0.1786 0.2500 0.1429 0.5000

of time (14 days). During this monitoring period, we used
the OpenTelemetry collector to collect all request data and
redirected it to the tracing frameworks under evaluation
(Mint and four baselines) to complete subsequent trace data
processing steps. Simultaneously, we recorded which trace
IDs users queried daily during this period and applied these
queries to the tracing frameworks. If the tracing framework
could return the complete information of the queried trace,
it was marked as an ‘exact hit’. If it could return approximate
information of the queried trace, it was marked as a ‘partial
hit’. If there was no record at all, it was marked as a ‘miss’.

Fig. 12 shows the number of hits each tracing framework
achieved during the experiment period in response to queries.
The red dashed line, labeled “Total’, represents the total num-
ber of user queries per day during this period. As seen, when
considering partial hits, Mint responds to all queries, mean-
ing it can provide at least approximate information for every
trace. When considering only exact hits, Mint still outper-
forms baseline methods by responding to more queries.

Effectiveness for downstream analysis. To simulate
real-world microservices problem analysis, we conducted
chaos engineering on the OnlineBoutique and TrainTicket
benchmarks. We used Chaosblade [7] to inject a total of 56
faults into these two benchmark microservices. The types
of injected faults are shown in Table 2. Notably, the two
open-source microservice benchmarks we used are widely
adopted in previous trace analysis studies [21, 23, 57], and
the injected failures are also among the most common types
found in real-world production environments [57].

We deployed Mint and the other four baselines on the
benchmark microservices to capture trace data. Using three
classic trace-based analysis methods (i.e., MicroRank [57],
TraceRCA [30], TraceAnomaly [35]), we conducted RCA
based on the captured trace data. We then calculated the
top-1 accuracy (A@1) [30] of the analysis results.

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

OnlineBoutique
40,000+ o]

40,000

20,000 s < 20,000

2,000 4 2,000

1,000 “ <4 1,000

Trace Data Storage
Overhead (MB/mi

S
B8 oo

Trace Data Network
Bandwidth(MB/min)

30,000

OnlineBoutique TrainTicket

50,000 T 4 50,0004 T

b
e aalih
o

<M

4,000 7

GO

o ARSI
=
et

4,000 7

30,000

2,000 ogg

S = =o
e

2,000 1
T A o B eotrer

T — T T T T
20,000 40,000 60,000 80,000 100,000
Request Throughput (reg/min)

s OT-Full OT-Head

T T T T
40,000 60,000 80,000 100,000
Request Throughput (req/min)

T
20,000

OT-Tail

T T T T T
20,000 40,000 60,000 80,000 100,000
Request Throughput (req/min)

T T T T

40,000 60,000 80,000 100,000
Request Throughput (req/min)
Hindsight —— Mint

T
20,000

—o— Sieve

Figure 11. Tracing network and storage overhead on OnlineBoutique and TrainTicket Benchmarks.

200

2501 -- Total
g 200- — OT-He'ad
E OT-Tail
2 1504 1 Sieve
= 1004 ! | Hindsight
= Mint-Exact
504 4 — Mint-Partial
0 T T T T T T T
0 2 4 6 8 10 12 14

Days

Figure 12. Hit number for user queries in Alibaba during 14
days, demonstrating Mint can respond to all requests.

Table 3 shows the A@1 for different combinations of
tracing frameworks and RCA methods. It can be seen that
Mint significantly improves the accuracy of downstream root
cause analysis compared to baseline methods.

MicroRank [57] and TraceRCA [30] require a sufficient
number of common-case traces to conduct spectrum anal-
ysis [49] for root cause identification. TraceAnomaly [35]
compares the abnormal trace with normal templates to locate
root causes, also needing enough common traces to establish
normal templates. The previous ‘1 or 0’ sampling strategy,
which entirely discarded common traces, severely weakened
these RCA methods, resulting in A@1 below 38%.

Although using the same trace storage size, Mint with
the ‘commonality + variability’ approach retains essential
information for all traces and detailed information of edge
cases, fully enhancing the performance of RCA methods,
with an average increase of A@1 from 25% to 50%.

5.3 Contribution of Commonality and Variability
Analysis

In RQ1, we have explored Mint’s overall trace reduction
capability, in this experiment, we now focus on Mint’s loss-
less compression ability. We compare Mint’s compression
ratio with other compression tools. Notably, trace compres-
sion in this context requires that compressed data can be
directly used for retrieval and query without decompres-
sion. General-purpose compressors (e.g., gzip [4], bzip2 [3])
are unsuitable here because they compress the original file
character-by-character into a binary file, making direct re-
trieval or query impossible without decompressing the entire
dataset first. This does not practically reduce storage costs
and significantly increases query latency. Therefore, we com-
pare Mint with log-specific compressors (i.e., logzip [33],

(a) Basic information of Datasets (b) API distribution of different datasets

API'1
API 2 API 8
Dataset Trace API Average
atasel | Number | Number Depth
A 142,217 2 6
B 842,103 4 1 API 3 API7
C 1,652,214 4 52
D 256,477 6 15
& 1,143,529 6 28
F 1,874,583 8 23 API 4 API 6
APIS
Dataset A @ Dataset B Dataset C Dataset D Dataset E @Dataset F

Figure 13. Description of 6 datasets in Alibaba.

Table 4. Comparison in terms of Compression Ratio.

Dataset LogZip LogReducer CLP w/oSp w/o7p Mint
A 16.7989 19.9594 22.7130 21.2503 23.1391 45.1874
B 13.0634 10.2291 14.0553 14.3892 15.9906 41.0603
C 5.2411 7.8613 11.5995 14.3229 13.7895 22.7690
D 11.0920 11.4943 14.4578 10.2255 18.1101 36.6724
& 8.7774 9.0126 12.1723 10.1943 17.1917 32.0245
Vi 9.2336 10.6611 153990 8.9231 19.7713 29.7024

logreducer [55] and CLP [50]), which also eliminate redun-
dancy based on data characteristics for compression.

Additionally, to individually evaluate Mint’s effectiveness
at both levels of commonality and variability parsing, we
perform an ablation study and design two variants: Mint
without inter-span level parsing (denoted as w/o Sp) and
Mint without inter-trace level parsing (denoted as w/o 7 p).

To evaluate Mint’s trace compression ability in various
production environments, we selected 6 subsystems from
Alibaba to generate real-world traces, each with different
API counts and call depths. Detailed descriptions of these
datasets are shown in Fig. 13.

Table 4 shows the compression ratios of the five approaches
tested on the six datasets. Mint outperformed the two base-
line methods by an average of 14.90 to 28.38 in compression
ratio. This improvement is because Mint more effectively con-
siders the unique characteristics of trace data and compresses
traces based on topology, achieving higher performance. Ad-
ditionally, Mint significantly outperforms its two ablation
variants, with an average improvement of 8.45 to 26.45 in
compression ratio, demonstrating that both inter-span and
inter-trace level parsing contribute to trace compression.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

T1 200QPS,5APls T2 400QPS,5APls T3:600QPS 5APls T4: 800 QPS, 5APIs TS: 1000 QPS, SAPIs

T6: 1000 QPS, 5APls T7:400QPS, 1APls T&:400QPS, 2APls T9: 1000QPS,8APls T10: 600 QPS, 3AFls
T11: 200QPS, 2APIs T12: 800 QPS, 4APls T13: 200 QPS, 4APIs T14: 400 QPS, 4APIs
— No-Tracing OT-Head Mint
T T 0 T
3 54 B
% 2.] T4 T5 T6 i
E £ .1 Ti{) My, ‘ T12 i
8%] 2]
=2 TL s | T10 T14
1 k1 [1T T13 1
0; T T T T T T T
T
x_ 35 g
i |]
z %’2'5_ A]
24 [~ :
Iﬂ’é 159 (4
g9] f |]
0.54 B E
T T T T T T T
16 T T T
14%- l
% 12%+ ’ I
& 10%] “VM ’V\W e \M/M
8%
g 6% I | | Waal
I I P | I | P I S I
o“ “Ww | | | Il '
2% | et [
0%=7— ——— T T T T T - —
105
3 10.44 B
10.34 M B
ﬁ’ 102 M 1
S 1014 MMN J_M_/N']
E 104
T 99 M\J\Mﬂ
T 9.89
g e
9.7 T T T T T T
14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00

Figure 14. Tracing overhead during 14 load tests on Al-
ibaba’s production microservices system.

5.4 Mint Overhead and Scalability

End-to-End Tracing Overhead. To ensure Mint is a prac-
tical tool, we evaluate and demonstrate that Mint produces
acceptable computational, network, and storage overhead.
We also assess the impact of request throughput and request
complexity to test Mint’s scalability. To ensure fairness in
experiments, both trace data generated by Mint and by all
baselines were persisted to Elasticsearch [11]. We conduct
our experiments using a production microservice system
from Alibaba, which includes web services, MongoDB [39]
access, and MySQL [40] access. We create three identical
replicas, each with Mint, OpenTelemetry (with head sam-
pling), or no tracing framework installed. To ensure fairness,
we control Mint and OpenTelemetry to have the same sam-
pling rate (10%). During the experiments, we inject traffic
into the three replicas and conduct 14 load tests, with varying
request throughput and APIrequests. Engineers indicate that
load tests of this scale are able to reflect Mint’s performance
during peak traffic periods in most systems.

The experimental results are shown in Fig. 14. Fig. 14 (a) in-
dicates that all three replicas received the same traffic during
the 14 tests. As seen in Fig. 14 (b), Mint effectively reduced
the trace data traffic through compression, with egress net-
work bandwidth increasing by only 2.88% compared to no
tracing. In contrast, OT-Head increased the bandwidth by

Huang et al.

No-Tracing — OT-Head Mint
1

w
2
H
T

(b) Query Latency (ms)

[N

]

H

T

(a) End-to-End Request
Latency (ms)
>
N

T
20:00 21:00 22:00 05/11 05/16 05/21 05/26

Figure 15. End-to-End request latency and query latency
on Alibaba’s production microservices system.

Table 5. Pattern extraction results of Span Parser and Trace
Parser on 5 sub-services in Alibaba Cloud.

Sub-Service Raw Trace Span Level Trace Level
Number | Pattern Number | Pattern Number
S1 146,985 11 8
S2 126,245 10 8
S3 93,546 14 5
S4 92,527 7 3
S5 79,179 9 3

19.35%. Fig. 14 (c) shows that Mint’s computational overhead
during tracing is acceptable, with an average CPU usage
increase of 0.86% compared to no tracing, and 0.39% less
than OT-Head. Fig. 14 (d) illustrates that Mint’s storage over-
head is also acceptable, similar to OT-Head, with an average
increase of 1.8% compared to no tracing.

Latency. We also evaluated the impact of using Mint for
tracing on end-to-end request latency and the latency of
querying traces with Mint. The experiment was conducted
on the same production system of Alibaba as in the tests in
Fig. 14. Fig. 15 (a) shows that for different types of requests,
using Mint increased the request latency by an average of
0.21%, which is entirely acceptable. Fig. 15 (b) indicates that
using Mint for querying took, on average, 4.2% longer than
using OpenTelemetry, with the P95 latency below 1 second,
meeting production environment requirements.

Pattern extraction performance. In the previous exper-
iments, we verified Mint’s end-to-end performance. Next, we
designed an experiment to test the pattern extraction capa-
bilities of the Span Parser and Trace Parser. We collected raw
trace data generated by five sub-services in Alibaba Cloud
over an hour. We used Span Parser and Trace Parser to ex-
tract patterns at the span level and trace level, respectively,
and recorded the number of patterns obtained, as shown in
Table 5. The results show that both Span Parser and Trace
Parser effectively aggregate patterns from trace data of dif-
ferent sub-services. The compression ratio from the original
log count to span-level patterns ranges from 6,681 to 13,362,
and from the original log count to trace level patterns, it
ranges from 15,780 to 30,842.

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

Sub-Service 1
™ 42000 —0— Sub-Service 2

236000 O

& 34000 \o\ﬂ
32000 \0

0.0 0.2 0.4 0.6 0.8 1.0
Similarity Threshold

Figure 16. The total storage size of patterns and parameters
with the similarity threshold at 0.2, 0.4, 0.6, and 0.8.

6 Discussions
6.1 Parameter Sensitivity

The default parameter settings are based on our real-world
implementation, where we found them to deliver the best
overall results. The primary parameter in Mint is the simi-
larity threshold in the Span Parser. A higher threshold leads
to more patterns but fewer parameters. We used raw trace
data from two sub-services, as mentioned in § 5.4, and set
the similarity threshold at 0.2, 0.4, 0.6, and 0.8 to explore the
effect on the total storage size of patterns and parameters
(without sampling or compression). As shown in Fig. 16, the
total storage size for patterns and parameters decreases as
the similarity threshold increases. However, an excessively
high similarity threshold reduces the differences between
spans within the same pattern, weakening the parameter
extraction effectiveness. Considering both total storage size
and parameter extraction effectiveness, we set the default
similarity threshold to 0.8. In most cases, using the default
settings will yield satisfactory results.

6.2 Trace Coherence

Trace coherence refers to the requirement that a distributed
trace should maintain its topological integrity, as a frag-
mented trace loses its end-to-end visibility necessary for
analysis [60]. Mint ensures that all stored trace (whether
it’s an unsampled trace or a sampled trace) maintains trace
coherence. Mint guarantees trace coherence through several
designs: (1) All trace topology patterns are recorded at every
node they pass through and fully reported to the backend.
(2) The no-miss property of Bloom Filters ensures that Mint
can gather all segments of a queried trace during a query.
(3) Each trace topology segment’s entry and exit operations
identify its upstream and downstream segments, respectively.
By upstream-downstream matching, the complete topology
of each trace can be reconstructed.

6.3 Production Use Cases of Approximate Traces

A core feature of Mint is that it does not discard unsampled
traces. Instead, it returns an approximate trace. We analyzed
two use cases (UCs) where approximate traces were used for

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

analysis after Mint was deployed in a real-world system in
Alibaba Cloud. This demonstrates that approximate traces
of regular traces are highly beneficial for trace analysis.

Trace Exploration (UC 1). Take the real-world case from
§ 2.2.2 as an example. On Mar. 25, 2024, when users needed
to explore and visualize traces that were unsampled but es-
sential for analysis, previous tracing frameworks based on
the ‘1 or 0’ strategy provided no results due to discarding
the unsampled traces. However, with Mint, approximately
80% of the Trace Explorer functionality can be remained
using approximate traces. This includes the full trace exe-
cution path, flame graph, types and approximate content of
each operation. Using above information, users analyzed the
topology and key data of these traces, meeting their analysis
needs for the queries in this case.

Batch Trace Analysis (UC 2). In production scenarios,
analysts often need to perform batch analysis on traces over
a specific period or with certain characteristics. For example,
they may need to plot scatter diagrams of trace features
or aggregate the topology of multiple traces. Before using
Mint, sampling limitations meant that an average batch query
could only retrieve 3,000-5,000 spans, which was insufficient
for thorough analysis, as this might only cover a few minutes
of data. With Mint, unsampled traces can be included in
batch analysis through approximate traces, which still retain
execution paths and basic attributes, increasing the number
of spans available to millions. This expanded data volume
allows users to achieve better batch processing results and
improved accuracy.

7 Conclusions

In this paper, we propose the ‘commonality + variability’
paradigm for trace reduction and design Mint to implement
this paradigm, capturing full requests in a cost-efficient way.
Mint parses trace data on two levels, aggregates patterns, and
filters parameters, ensuring effective recording of each re-
quest. Our experiments demonstrate that Mint retains more
useful information while reducing trace volume and is light-
weight enough to meet production requirements. We also
implemented Mint at a large cloud provider, Alibaba, where
user feedback indicated a significant improvement in user
experience and facilitated further analysis.

Acknowledgments

We sincerely appreciate the insightful feedback from the
anonymous reviewers and our shepherd, Ryan Huang. This
work was supported by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2023B1515020054,
in part by the National Natural Science Foundation of China
under Grant 62272495, and in part by Alibaba project under
Grant 20925056. The corresponding author is Pengfei Chen.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

References

[

[2
[3
[4
[5

[6

[10

[11
[12
(13

(14

[15
(16
(17

[18

[19

[20

[21

= S S

]

[t

—

[t

[l

]

]

]

—

]

[t

—

1] Zipkin homepage. https://zipkin.io, 2023. [Online].

7za tool. https://linux.die.net/man/1/7za, 2024. [Online].

The bzip2 homepage. https://sourceware.org/bzip2/, 2024. [Online].
The gzip homepage. https://www.gzip.org, 2024. [Online].

Alibaba. Alibaba. https://www.alibaba.com/, 2024. Accessed Oct. 7,
2024.

Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth
Narayanan. Magpie: Online modelling and performance-aware sys-
tems. In 9th Workshop on Hot Topics in Operating Systems (HotOS IX),
Lihue, HI, May 2003. USENIX Association.

Chaosblade. Chaosblade. https://github.com/chaosblade-io/
chaosblade, 2024. Accessed Mar. 6, 2024.

Robert Christensen and Feifei Li. Adaptive log compression for mas-
sive log data. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD 13, page 1283-1284,
New York, NY, USA, 2013. Association for Computing Machinery.
datadog. What is distributed tracing? how it works & use cases. https:
//www.datadoghq.com/knowledge-center/distributed-tracing/, 2024.
Accessed: 2024/4/29.

Hailun Ding, Shenao Yan, Juan Zhai, and Shiqing Ma. ELISE: A stor-
age efficient logging system powered by redundancy reduction and
representation learning. In 30th USENIX Security Symposium (USENIX
Security 21), pages 3023-3040. USENIX Association, August 2021.
Elasticsearch. Elasticsearch. https://github.com/elastic/elasticsearch,
2024. Accessed Mar. 6, 2024.

Bo Feng, Chentao Wu, and Jie Li. Mlc: An efficient multi-level log
compression method for cloud backup systems. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 1358-1365, 2016.

Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker.
X-Trace: A pervasive network tracing framework. In 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI 07),
Cambridge, MA, April 2007. USENIX Association.

FudanSELab. Trainticket. https://github.com/FudanSELab/train-ticket,
2024. Accessed June. 6, 2024.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. Sage: Practical and scalable ml-driven performance debugging in
microservices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, page 135-151, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

Yu Gan, Guiyang Liu, Xin Zhang, Qi Zhou, Jiesheng Wu, and Jiangwei
Jiang. Sleuth: A trace-based root cause analysis system for large-
scale microservices with graph neural networks. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 4, pages 324-
337, 2023.

Alim Ul Gias, Yicheng Gao, Matthew Sheldon, José A. Perusquia, Owen
O’Brien, and Giuliano Casale. Samplehst: Efficient on-the-fly selection
of distributed traces, 2022.

GoogleCloudPlatform. Onlineboutique. https://github.com/
GoogleCloudPlatform/microservices-demo, 2024. Accessed June. 6,
2024.

guava. guava. https://github.com/google/guava, 2024. Accessed Mar.
6, 2024.

Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang,
Dan Ding, Tao Xie, and Liangfei Su. Graph-based trace analysis for
microservice architecture understanding and problem diagnosis. In
Proceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 1387-1397, New York, NY, USA,
2020. Association for Computing Machinery.

Haiyu Huang, Xiaoyu Zhang, Pengfei Chen, Zilong He, Zhiming Chen,
Guangba Yu, Hongyang Chen, and Chen Sun. Trastrainer: Adaptive

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Huang et al.

sampling for distributed traces with system runtime state. Proc. ACM
Softw. Eng., 1(FSE), July 2024.

Lexiang Huang and Timothy Zhu. Tprof: Performance profiling via
structural aggregation and automated analysis of distributed systems
traces. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 76-91, New York, NY, USA, 2021. Association for
Computing Machinery.

Zicheng Huang, Pengfei Chen, Guangba Yu, Hongyang Chen, and
Zibin Zheng. Sieve: Attention-based sampling of end-to-end trace
data in distributed microservice systems. In 2021 IEEE International
Conference on Web Services (ICWS), pages 436-446, 2021.

jaeger. Jaeger. https://www.jaegertracing.io/, 2023. Accessed:
2024/4/29.
Jonathan Kaldor, Jonathan Mace, Michat Bejda, Edison Gao, Wiktor

Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, et al. Canopy: An end-to-end performance tracing
and analysis system. In Proceedings of the 26th symposium on operating
systems principles, pages 34-50, 2017.

Jonathan Kaldor, Jonathan Mace, Michat Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. Canopy: An end-to-end performance tracing and analy-
sis system. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP "17, page 34-50, New York, NY, USA, 2017. Association
for Computing Machinery.

Chien-An Lai, Josh Kimball, Tao Zhu, Qingyang Wang, and Calton
Pu. milliscope: A fine-grained monitoring framework for performance
debugging of n-tier web services. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 92-102,
2017.

Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and Rodrigo Fon-
seca. Weighted sampling of execution traces: Capturing more needles
and less hay. In Proceedings of the ACM Symposium on Cloud Comput-
ing, SoCC ’18, page 326-332, New York, NY, USA, 2018. Association
for Computing Machinery.

Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan
Mace. Sifter: Scalable sampling for distributed traces, without feature
engineering. In Proceedings of the ACM Symposium on Cloud Comput-
ing, SoCC ’19, page 312-324, New York, NY, USA, 2019. Association
for Computing Machinery.

Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei
Zhang, Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, Zhekang
Chen, Wenchi Zhang, Xiaohui Nie, Kaixin Sui, and Dan Pei. Practical
root cause localization for microservice systems via trace analysis. In
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), pages 1-10, 2021.

Hao Lin, Jingyu Zhou, Bin Yao, Minyi Guo, and Jie Li. Cowic: A
column-wise independent compression for log stream analysis. In
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 21-30, 2015.

Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang
Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. Microhecl: High-efficient
root cause localization in large-scale microservice systems. In Pro-
ceedings of the 43rd International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP 21, page 338-347. IEEE
Press, 2021.

Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and
Michael R Lyu. Logzip: Extracting hidden structures via iterative
clustering for log compression. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 863-873.
IEEE, 2019.

Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and
Michael R. Lyu. Logzip: extracting hidden structures via iterative
clustering for log compression. In Proceedings of the 34th IEEE/ACM

https://zipkin.io
https://linux.die.net/man/1/7za
https://sourceware.org/bzip2/
 https://www.gzip.org
https://www.alibaba.com/
https://github.com/chaosblade-io/chaosblade
https://github.com/chaosblade-io/chaosblade
https://www.datadoghq.com/knowledge-center/distributed-tracing/
https://www.datadoghq.com/knowledge-center/distributed-tracing/
https://github.com/elastic/elasticsearch
https://github.com/FudanSELab/train-ticket
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/google/guava
https://www.jaegertracing.io/

Mint: Cost-Efficient Tracing via Commonality and Variability Analysis

International Conference on Automated Software Engineering, ASE 19,
page 863-873. IEEE Press, 2020.

[35] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen,
Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue,
and Dan Pei. Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks. In 2020 IEEE 31st Inter-
national Symposium on Software Reliability Engineering (ISSRE), pages
48-58, 2020.

[36] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing:
dynamic causal monitoring for distributed systems. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP 15, page
378-393, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

[37] Michael Meinig, Peter Troger, and Christoph Meinel. Rough logs: A
data reduction approach for log files. In International Conference on
Enterprise Information Systems, 2019.

[38] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu,
and Hua Cai. Toward fine-grained, unsupervised, scalable performance
diagnosis for production cloud computing systems. IEEE Transactions
on Parallel and Distributed Systems, 24(6):1245-1255, 2013.

[39] MongoDB. Mongodb: The developer data platform | mongodb. https:
//www.mongodb.com/, 2024. Accessed Mar. 6, 2024.

[40] MySQL. Mysql. https://www.mysql.com/, 2024. Accessed Mar. 6, 2024.

[41] Naver. Pinpoint | leading open-source apm. https://pinpoint-apm.
gitbook.io/pinpoint/, 2024. Accessed: 2024/4/29.

[42] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly detection
from system tracing data using multimodal deep learning. In 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), pages
179-186, 2019.

[43] Opentelemetry. Opentelemetry. https://opentelemetry.io, 2023. Ac-
cessed: 2024/4/29.

[44] opentelemetry. Opentelemetry head sampling. https:
//opentelemetry.io/docs/concepts/sampling/#head-sampling,

2024. Accessed: 2024/4/29.

[45] opentelemetry. Opentelemetry instrumentation. https:
//opentelemetry.io/docs/concepts/instrumentation/, 2024. Ac-
cessed: 2024/4/29.

[46] opentelemetry. Opentelemetry protocol.
https://opentelemetry.io/docs/specs/otel/protocol/, 2024. Accessed:
2024/4/29.

[47] opentelemetry. Opentelemetry span. https://opentelemetry.io/docs/
concepts/signals/traces/#spans, 2024. Accessed: 2024/4/29.

[48] opentelemetry. Opentelemetry tail sampling. https://opentelemetry.
io/docs/concepts/sampling/#tail-sampling, 2024. Accessed: 2024/4/29.

[49] Thomas W. Reps, Thomas Ball, Manuvir Das, and James R. Larus. The
use of program profiling for software maintenance with applications to
the year 2000 problem. In 6th European Software Engineering Conference
Held Jointly with the 5th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 432-449, 1997.

[50] Kirk Rodrigues, Yu Luo, and Ding Yuan. CLP: Efficient and scalable
search on compressed text logs. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 21), pages 183-198.
USENIX Association, July 2021.

[51] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat,
Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,
and Gregory R. Ganger. Diagnosing performance changes by com-
paring request flows. In 8th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 11), Boston, MA, March 2011.
USENIX Association.

[52] Benjamin H Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
Dapper, a large-scale distributed systems tracing infrastructure. 2010.

[53] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
Theory and practice of bloom filters for distributed systems. IEEE

[54]

[55]

[56]

[57]

[58]

[59]

[60]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

Communications Surveys & Tutorials, 14(1):131-155, 2011.

Junyu Wei, Guangyan Zhang, Junchao Chen, Yang Wang, Weimin
Zheng, Tingtao Sun, Jiesheng Wu, and Jiangwei Jiang. Loggrep: Fast
and cheap cloud log storage by exploiting both static and runtime
patterns. In Proceedings of the Eighteenth European Conference on
Computer Systems, EuroSys ’23, page 452-468, New York, NY, USA,
2023. Association for Computing Machinery.

Junyu Wei, Guangyan Zhang, Yang Wang, Zhiwei Liu, Zhanyang Zhu,
Junchao Chen, Tingtao Sun, and Qi Zhou. On the feasibility of parser-
based log compression in {Large-Scale} cloud systems. In 19th USENIX
Conference on File and Storage Technologies (FAST 21), pages 249-262,
2021.

Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E. Hassan.
Improving state-of-the-art compression techniques for log manage-
ment tools. IEEE Transactions on Software Engineering, 48(8):2748-2760,
2022.

Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng
Huang, Linxiao Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li.
Microrank: End-to-end latency issue localization with extended spec-
trum analysis in microservice environments. In WWW 2021, page
3087-3098. ACM, 2021.

Guangba Yu, Pengfei Chen, Pairui Li, Tianjun Weng, Haibing Zheng,
Yuetang Deng, and Zibin Zheng. Logreducer: Identify and reduce log
hotspots in kernel on the fly. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages 1763-1775. IEEE,
2023.

Chenxi Zhang, Xin Peng, Tong Zhou, Chaofeng Sha, Zhenghui Yan,
Yiru Chen, and Hong Yang. Tracecrl: Contrastive representation learn-
ing for microservice trace analysis. In ESEC/FSE 2022, page 1221-1232.
ACM, 2022.

Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan
Mace. The benefit of hindsight: Tracing {Edge-Cases} in distributed
systems. In 20th USENLX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 321-339, 2023.

https://www.mongodb.com/
https://www.mongodb.com/
https://www.mysql.com/
 https://pinpoint-apm.gitbook.io/pinpoint/
 https://pinpoint-apm.gitbook.io/pinpoint/
https://opentelemetry.io
https://opentelemetry.io/docs/concepts/sampling/#head-sampling
https://opentelemetry.io/docs/concepts/sampling/#head-sampling
https://opentelemetry.io/docs/concepts/instrumentation/
https://opentelemetry.io/docs/concepts/instrumentation/
https://opentelemetry.io/docs/concepts/signals/traces/#spans
https://opentelemetry.io/docs/concepts/signals/traces/#spans
https://opentelemetry.io/docs/concepts/sampling/#tail-sampling
https://opentelemetry.io/docs/concepts/sampling/#tail-sampling

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Empirical Study on Traces in Industry

	3 Techniques
	3.1 Overview
	3.2 Inter-Span Level Parsing
	3.3 Inter-Trace Level Parsing
	3.4 Data Reporting

	4 Implementation
	4.1 Mint Agent
	4.2 Mint Collector
	4.3 Mint Backend and Querier

	5 Evaluation
	5.1 Effectiveness in Reducing Trace Data
	5.2 Effectiveness in Retaining More Trace Information
	5.3 Contribution of Commonality and Variability Analysis
	5.4 Mint Overhead and Scalability

	6 Discussions
	6.1 Parameter Sensitivity
	6.2 Trace Coherence
	6.3 Production Use Cases of Approximate Traces

	7 Conclusions
	Acknowledgments
	References

