
TraStrainer: Adaptive Sampling for Distributed Traces with
System Runtime State
HAIYU HUANG, Sun Yat-sen University, China

XIAOYU ZHANG, Huawei, China
PENGFEI CHEN, ZILONG HE, ZHIMING CHEN, GUANGBA YU, and HONGYANG
CHEN, Sun Yat-sen University, China

CHEN SUN, Huawei, China

Distributed tracing has been widely adopted in many microservice systems and plays an important role in

monitoring and analyzing the system. However, trace data often come in large volumes, incurring substantial

computational and storage costs. To reduce the quantity of traces, trace sampling has become a prominent

topic of discussion, and several methods have been proposed in prior work. To attain higher-quality sampling

outcomes, biased sampling has gained more attention compared to random sampling. Previous biased sampling

methods primarily considered the importance of traces based on diversity, aiming to sample more edge-case

traces and fewer common-case traces. However, we contend that relying solely on trace diversity for sampling

is insufficient, system runtime state is another crucial factor that needs to be considered, especially in cases of

system failures. In this study, we introduce TraStrainer, an online sampler that takes into account both system

runtime state and trace diversity. TraStrainer employs an interpretable and automated encoding method

to represent traces as vectors. Simultaneously, it adaptively determines sampling preferences by analyzing

system runtime metrics. When sampling, it combines the results of system-bias and diversity-bias through a

dynamic voting mechanism. Experimental results demonstrate that TraStrainer can achieve higher quality

sampling results and significantly improve the performance of downstream root cause analysis (RCA) tasks. It

has led to an average increase of 32.63% in Top-1 RCA accuracy compared to four baselines in two datasets.

CCS Concepts: • Software and its engineering → Cloud computing; Software reliability; Software
performance.

Additional Key Words and Phrases: distributed tracing, biased sampling, microservice

ACM Reference Format:
Haiyu Huang, Xiaoyu Zhang, Pengfei Chen, Zilong He, Zhiming Chen, Guangba Yu, Hongyang Chen, and Chen

Sun. 2024. TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State. Proc. ACM Softw.
Eng. 1, FSE, Article 22 (July 2024), 21 pages. https://doi.org/10.1145/3643748

1 INTRODUCTION
Industrial microservice systems operate in a highly unpredictable and dynamic setting [46, 53]. To

effectively monitor and manage these systems, distributed tracing [37] has been widely adopted.

By implementing frameworks like OpenTelemetry [30] and SkyWalking [38], end-to-end paths

of requests through service instances can be recorded as trace data. These distributed traces offer

Authors’ addresses: Haiyu Huang, huanghy95@mail2.sysu.edu.cn, Sun Yat-sen University, Guangzhou, China; Xiaoyu Zhang,

zhangxiaoyu87@huawei.com, Huawei, Shenzhen, China; Pengfei Chen, chenpf7@mail.sysu.edu.cn; Zilong He, hezlong@

mail2.sysu.edu.cn; Zhiming Chen, chenzhm37@mail2.sysu.edu.cn; Guangba Yu, yugb5@mail2.sysu.edu.cn; Hongyang Chen,

chenhy95@mail2.sysu.edu.cn, Sun Yat-sen University, Guangzhou, China; Chen Sun, sunchen48@huawei.com, Huawei,

Beijing, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART22

https://doi.org/10.1145/3643748

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0000-6146-2493
HTTPS://ORCID.ORG/0000-0003-3458-8706
HTTPS://ORCID.ORG/0000-0003-0972-6900
HTTPS://ORCID.ORG/0000-0001-7963-082X
HTTPS://ORCID.ORG/0009-0004-9554-2626
HTTPS://ORCID.ORG/0000-0001-6195-9088
HTTPS://ORCID.ORG/0000-0002-9419-3768
HTTPS://ORCID.ORG/0000-0002-9419-3768
HTTPS://ORCID.ORG/0000-0003-2480-2350
https://doi.org/10.1145/3643748
https://orcid.org/0009-0000-6146-2493
https://orcid.org/0000-0003-3458-8706
https://orcid.org/0000-0003-0972-6900
https://orcid.org/0000-0001-7963-082X
https://orcid.org/0009-0004-9554-2626
https://orcid.org/0000-0001-6195-9088
https://orcid.org/0000-0002-9419-3768
https://orcid.org/0000-0003-2480-2350
https://doi.org/10.1145/3643748

22:2 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Req 4

Bias towards
Traces Involving

SQL Access

Req 3Req 1

Req 2
. . .

System
Runtime State

Sampling Pre-
ference for Traces

Shift in
CpuUsage
on Node A

CpuUsage

Bias towards
Traces Passing
through Node A

SQL Connection
Time The SQL

Server Becomes
Unavailable

. . .

Fig. 1. The relationship between system runtime state and trace sampling preference.

valuable insights for assessing risks, troubleshooting, and comprehending the system’s intricacies [7,

39]. Site Reliability Engineers (SREs) extensively leverage them to profile the environment [14],

detect anomalies [25, 27, 51], and diagnose failures [10, 26, 35, 45].

Although distributed traces are helpful for analysis, their quantities and storage costs are signifi-

cant [21]. Performing subsequent analysis on the complete set of traces is also computationally

expensive [16]. To address this, trace sampling techniques [11, 16, 20, 21, 37, 52] have been intro-

duced to selectively capture traces of interest.

A common sampling approach used by tracing systems like Jaeger [17] and Zipkin [2] is uni-

form random sampling [21]. This method determines whether a trace should be sampled at the

beginning of the trace, thus is also known as head-based sampling. However, different traces

have varying analytical value within the system, and head-based sampling cannot preserve more

valuable traces [16]. To address this, tail-based sampling has been proposed and adopted in previous

works [11, 16, 20, 21]. This method makes sampling decisions at the end of the request, allowing

for the capture of complete trace information to determine if it is valuable. Thus it is also known as

biased trace sampling.

However, previous biased samplingmethods [11, 16, 20, 21, 52] have not fully considered sampling

preferences, especially neglect the influence of system runtime state. These methods were only

based on a core intuition: setting sampling preferences based on the specificity and diversity of

traces, tending to keep more edge-case traces and fewer common-case traces. This viewpoint makes

sense because edge-case traces are more interesting and informative [21]. However, common-

case traces are also worth analyzing, as demonstrated in §2.2. Moreover, methods solely based

on trace diversity exhibit the same sampling preference (i.e., favoring rare traces) at any given

point in system operation, disregarding the crucial context of system runtime state. In fact, the

characteristics of a “valuable trace” also change when the system state changes, as shown in Fig. 1.

For example, when there is an exception in the SQL server, SREs are more interested in the traces

that access database because they are more likely to reflect issues and are more worth analyzing.

TraStrainer Approach.To selectmore valuable traceswhile reducing storage and computational

costs, we propose an online biased trace sampling approach called TraStrainer. The core idea

behind TraStrainer is to take into account both system runtime state and trace diversity, adaptively

providing a more comprehensive sampling preference. TraStrainer simultaneously takes system

metrics and traces as inputs. Trace Encoder (§ 4.1) automatically encodes the coming trace into

vector representations based on the system metrics. The generated vector representations contain

both structural and state information of the trace, with each system metric corresponding to a

specific dimension in the vector. System Bias Extractor (§ 4.2) determines the valuable dimensions

based on the fluctuations of the system metrics and obtains a preference vector. System-Biased
Sampler (§ 4.3) and Diversity-Biased Sampler (§ 4.4) online calculate sampling probability from two

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:3

Node/Pod, Metric Type, Value, TimeStamp

Spans:
TraceID, SpanID,

Callee, Annotations

(a) Distributed Trace Data (b) System Metrics

TraceID: 351 SpanID: 1 Callee: svca-01 Annotations: {...}

TraceID: 351 SpanID: 2 Callee: svcb-01 Annotations: {...}

TraceID: 351 SpanID: 4 Callee: svcc-02 Annotations: {...}

Events:
TimeStamp, Duration,

EventAnnotations

Va
lu

e

Time

Va
lu

e

Time

（Node A, CpuUsage）

（Node B, LatencyP50）

Event1

Event4

Event3

Event6

TraceID: 351 SpanID: 3 Callee: svcc-01 Annotations: {...}

Fig. 2. Trace data and system metrics.

different perspectives. Finally, Composite Sampler (§ 4.5) utilizes a dynamic voting mechanism to

make the final sampling decision.

To evaluate the effectiveness and efficiency of TraStrainer, we constructed two datasets, one from
13 real-world production microservice systems and the other from two widely-used microservices

benchmarks, OnlineBoutique [12] and TrainTicket [9]. We conducted a comprehensive evaluation

of TraStrainer, including the quality of sampling results, performance in downstream tasks, and

sampling efficiency. The experimental results demonstrated that compared to four baseline methods,

TraStrainer was able to identify more valuable traces within the same budget and improve the

performance of downstream analysis. Furthermore, TraStrainer exhibited the better efficiency than

two online biased sampling methods.

Contributions. In summary, this study makes the following contributions.

• We present TraStrainer, an online biased trace sampler. By considering both system runtime state

and trace diversity, TraStrainer offers a more comprehensive approach to adaptively determine

sampling preferences.

• We propose an interpretable and automated method for trace representation. The generated trace

vector includes both the structural and state information of the trace, with each system metric

corresponding to a specific dimension in the vector.

• We combined different sampling methods with several classical trace-based analysis approaches

to investigate the impact of different sampling methods on downstream root cause analysis tasks.

• We have implemented TraStrainer and constructed two datasets to validate the quality of its

sampled data and its effectiveness in improving downstream analysis tasks. Moreover, the

experimental results show that our method outperforms state-of-the-art sampling methods.

2 BACKGROUND ANDMOTIVATION
2.1 Background
Distributed traces. A trace corresponds to a series of actions triggered by a request within

the system. It consists of a series of service operations (spans), and span events [32] have been

incorporated in some tracing frameworks [30] to enhance the information associated with each

span, as shown in Fig. 2(a). The structure of a trace reflects the order and hierarchy of the invocations

among services. The status information such as invocation latency and event annotations on each

span also provide crucial insights for subsequent analysis [15]. Despite the high analytical value of

traces, the computational and storage overheads are also significant concerns [20].

Trace sampling. Large-scale industrial microservice systems generate millions to billions of

traces daily [18, 37]. Analyzing and storing all traces incurs significant costs, making it impractical

to meet low-latency requirements [3, 33, 37, 55]. Additionally, not all traces hold valuable insights

for analysis [21]. Hence, sampling traces to filter out those with lower analytical value becomes a

crucial aspect of operations in microservice systems. The current sampling methods for traces can

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:4 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Node A

CPU Utilization
Increased

Node A

CPU Utilization
at Full Capacity

. . .

. . .

Phase ① :
Issue Arised

Phase ② :
Issue Exposed

Node A
CPU Utilization

Sampler w/o
System StatusProblem-related

Traces Sample
 Probability

Time

Time

Time

① ②

(b) Comparison of problem-related traces sample
probability of samplers without and with system status(a) The two phases during the occurrence of an issue.

Sampler with
System Status

a b

a b

a b

Fig. 3. An example of the importance of system runtime state in trace sampling preferences setting.

be broadly categorized into two types: head-based sampling [2, 17, 37] and biased sampling [11, 16,

20, 21, 52]. As mentioned in § 1, head-based sampling often results in lower quality traces being

retained. Therefore, our focus lies on biased sampling.

Systemmetrics. The system metrics are a series of time-series data that reflect the runtime state

of the system [19]. They typically consist of four components: timestamp, node or pod affiliation,

metric type, and value, as shown in Fig.2(b). During production, due to inevitable reliability and

performance issues, the system state undergoes real-time changes [44], and these changes are often

manifested by fluctuations in the system metrics [24]. For example, during an overload attack, Node

𝐴’s disk becomes paralyzed, which is manifested by a sharp increase in the DiskUsage metric on

Node 𝐴. By analyzing the fluctuations of the metrics, we can infer the runtime state of the system.

2.2 Motivation
As mentioned in § 2.1, distributed traces are extensively helpful in profiling, diagnosing, and

debugging [10, 26, 35, 45]. Therefore, the quality of the sampled traces largely determines the

effectiveness of downstream analysis [47]. Prior to this, several biased samplers [11, 16, 20, 21, 52]

were proposed to improve the quality of sampled traces. However, we found that the previous

biased sampling approaches did not generate truly high-quality traces for downstream analysis, as

demonstrated in our experimental findings (§ 5.5). After analyzing the experimental results, we

concluded that this was primarily due to insufficient settings in the sampling preferences of the

previous approaches. These approaches solely considered trace value based on diversity, favoring

edge-case traces over common-cases.

Solely favoring edge-case traces is not sufficient. This is because: (1) Some common-case

traces can be related to root causes. For instance, if there is an issue where a thread pool becomes

exhausted, the cause may be excessive requests simultaneously issued to the thread pool. The traces

associated to this issue may not exhibit any anomalies and are considered common-case traces. (2)

Common-case traces are also helpful in downstream analysis methods. For example, trace-based

root cause analysis algorithms [26, 45] typically need to collect a certain number of common-case

traces to learn the normal invocation patterns and then identify and locate root causes based on

this normal pattern. Some downstream approaches [23, 43] require common-case traces to conduct

spectrum analysis [34]. (3) When encountering a large number of edge-case traces, it is necessary

to determine which ones are more significant. In actual production scenarios, when system failures

happen, there are often numerous abnormal traces [45]. If the anomaly rate exceeds the budget

sampling rate, it becomes impossible to capture all the edge-case traces. In such scenarios, more

specific rules are required to capture the more valuable portions of these traces.

System runtime state plays an important role in determining valuable traces. As a
real-world issue case of Huawei is shown in Fig.3: 1○ During the time window [a, b], there was an

increase in concurrent requests to the MySQL Server on Node A, including some full table queries,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:5

···

···

···

···

···

···

···

···
···

···

· · ·

· · ·

Metric
Keys mn

Composite
Sampler

Tk+1

Look-back
Window

Tk T1

[p1, ..., pn]

System-Biased
Sampler

Diversity-Biased
Sampler

System Bias
Extractor

Trace Encoder

m1 ···

···
Runtime

Status

Coming
Trace

Preference Vector

System-Related
Features

Stucture-Related
Features Diversity-

Biased Result

System-
Biased
Result

Budget
Sampling Rate

Storage

Discard

Sample
Result

···

Fig. 4. An overview of TraStrainer.

which led to an increase in CPU utilization on Node A. 2○ After time b, the CPU utilization reached

full capacity, causing Node A to be unavailable. As a result, all requests passing through Node A
exhibited abnormal behavior, generating a large number of abnormal traces.

The manual analysis process conducted by SREs for this failure is as follows: When receiving a

system alert at time b, SREs examined the system state over a recent period and discovered the

increased CPU utilization on Node A during the time window [a, b]. They further filtered and

analyzed the traces passing through Node A, eventually identifying the root cause as an overload

attack on the MySQL Server during the [a, b] time period.

For previous samplers that only considered trace diversity [16, 21], the structure and status

information of the traces passing through Node A during the [a, b] time window actually appeared

normal. Since these traces were considered common-cases, their sampling probability remained low

during this time period, resulting in insufficient traces available for analysis and potentially missing

the traces related to the root cause event that manual analysis can be aware of. This scenario shows

major shortcomings of existing state-of-the-art samplers. It motivates us to consider the system

state to dynamically increase the sampling probability of traces related to issues within the time

window [a, b], based on the fluctuation of CPU utilization in Node A.
Goal. Given the discussion above, our goal is to implement biased trace sampling in a more

comprehensive way, which considers not only the trace diversity, but also the system runtime state.

2.3 Problem Formulation
We define the problem of biased trace sampling with system runtime state as follows. Given the

current system state metrics denoted asM and the traces collected over a period of time represented

by T , we aim to determine a sampling function 𝑆𝑝 (𝛽,M,T , 𝑡) for a given budget sampling rate

𝛽 . This function maintains an average rate of 𝛽 and calculates a biased sampling probability 𝜌 for

each trace 𝑡 ,

𝑆𝑝 (𝛽,M,T , 𝑡) → 𝜌,T ′ . (1)

Subsequently, the decision to retain trace 𝑡 is based on the sampling probability.

3 OVERVIEW
This section presents the design of TraStrainer, an adaptive online biased trace sampler. The

objective of TraStrainer is to capture higher-quality traces based on system runtime state and

trace diversity, and sample them with a higher probability. The overall architecture of TraStrainer
is illustrated in Fig. 4. TraStrainer consists of two main phases: runtime data preprocessing and

comprehensive sampling. In the runtime data preprocessing phase, for each coming trace, Trace
Encoder (§ 4.1) automatically encodes it in an interpretable manner guided bymetrics. The generated

vector representation includes both structural and status information of the trace, with each system

metric corresponding to a specific dimension in the vector. Simultaneously, System Bias Extractor
(§ 4.2) dynamically calculates the anomaly degree of each system metric. This degree serves as the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:6 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Span: 1 Node: A Annotation: {...}

Span: 4 Node: C Annotation: {...}

Span: 2 Node: B Annotation: {...}

Span: 3 Node: C Annotation: {...}

Span Bag

Span 1 Span 2

Span 3 Span 4

Invocation Tree

2614

895

1470

763

···

(s1)

(s2, s3)

(s4)

(C, SQLCon-
nectionTime)

m2

m3

···
mn

depth 1

depth 2

depth 3

Span: 3 Node: C
Duration: 763 Status: Error
Method: SQL Annotation: {...}

Span: 4 Node: C
Duration: 544 Status: OK
Method: SQL Annotation: {...}

Trace Vector Related Sub Span Bag

Input Trace Data

···

1

2 3

4

Hierarchical
Structure

Feature Extraction Feature Calculation

m1

(1+1)*
(763+544)

Fig. 5. The process of encoding traces in two parts: status-related and structure-related.
preference weight for the corresponding metric dimension. The larger the anomaly degree, the

higher the preference weight. The preference weights for each dimension form a preference vector

that determines which dimensions are more valuable.

During the online comprehensive sampling phase, TraStrainer takes into account the current

coming trace vector and a look-back window of previous trace vectors. It makes a sampling decision

that considers both the system bias and the diversity of the traces. On one hand, System-Biased
Sampler (§ 4.3) calculates the sampling probability for the coming trace based on the preference

vector obtained from System Bias Extractor, resulting in a system-biased sampling outcome. On the

other hand, Diversity-Biased Sampler (§ 4.4) determines the diversity-biased sampling outcome by

considering the structural and state differences between the coming trace and the previous traces.

Finally, Composite Sampler (§ 4.5) uses a dynamic voting mechanism to make the final sampling

decision based on the sampling budget and the current sampling frequency.

4 DETAILED DESIGN
4.1 Trace Encoder
Trace is not originally machine-readable and requires encoding into a machine-friendly format

(e.g., vector) for next-step analysis (e.g., clustering, sampling) [16]. However, previous approaches

suffered from insufficient manual intervention and a lack of interpretability. In order to address

these issues, Trace Encoder proposes an automated trace encoding method guided by systemmetrics,

which ensures that the dimensions of the resulting trace vector are interpretable.

As mentioned in § 2.1, a trace is a tree-like topology structure that contains valuable information

in both its status and structure. Therefore, we can divide the encoding of a trace into two parts:

status-related and structure-related, as shown in Fig. 5.

Encode the status-related part of the trace.When disregarding the structure of a trace, we can

perceive it as a bag of spans, denoted as 𝑆 = {𝑠1, ..., 𝑠𝑛}. Each span, denoted as 𝑠 , represents a unit of

work or operationwithin the trace. It includes essential information such as duration, status code, the

associated node or pod, as well as additional details provided by event annotations. The information

appended by event annotations can be complex and diverse. Previous approaches [16, 26] mostly

relied on manual selection of relevant information based on human experience. However, this

manual approach is costly and requires redefining rules when new fields are introduced.We leverage

system metrics to automatically determine the features we need.

Definition 1 (Related sub span bag 𝑆𝑚). For a metric 𝑚(𝑚.𝑛𝑜𝑑𝑒,𝑚.𝑡𝑦𝑝𝑒) and a trace 𝑡 , let
𝑆 = {𝑠1, ..., 𝑠𝑛} to be the span bag of 𝑡 . We use 𝑆𝑚 = {𝑠𝑚1, ..., 𝑠𝑚𝑛} to denote the related sub span bag of
𝑚, where 𝑠𝑚𝑖 must satisfy that 𝑠𝑚𝑖 .𝑛𝑜𝑑𝑒 =𝑚.𝑛𝑜𝑑𝑒 and𝑚.𝑡𝑦𝑝𝑒 related to 𝑠𝑚𝑖 .𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛.

Definition 2 (Feature value 𝑓𝑚). For the related sub span bag 𝑆𝑚 = {𝑠𝑚1, ..., 𝑠𝑚𝑛} of the metric
𝑚, we use 𝑆𝑎 = {𝑠𝑎1, ..., 𝑠𝑎𝑛} to denote the abnormal span in 𝑆𝑚 , where 𝑠𝑎𝑖 must satisfy that 𝑠𝑎𝑖 .𝑠𝑡𝑎𝑡𝑢𝑠

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:7

is abnormal. The feature value 𝑓𝑚 of𝑚 is calculated as follows:

𝑓𝑚 = (|𝑆𝑎 | + 1) ∗
𝑛∑︁
𝑖=1

𝑠𝑚𝑖 .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. (2)

As mentioned in § 2.1, each key of the system state metric𝑚 includes the type of the metric and

the node it belongs to (e.g., SQL connection time on node C), which can be represented by a tuple

(𝑚.𝑛𝑜𝑑𝑒,𝑚.𝑡𝑦𝑝𝑒). For a trace 𝑡 and its corresponding span bag 𝑆 , we select a subset of spans that

are relevant to the metric𝑚 as the related sub span bag 𝑆𝑚 . 𝑆𝑚 represents the set of all behaviors in

trace 𝑡 that are related to metric𝑚 (e.g., span 3 and 4 are the related spans of𝑚1 in Fig. 5). Therefore,

we calculate the statistical analysis of the spans in 𝑆𝑚 to obtain the feature value 𝑓𝑚 of 𝑡 in the

corresponding dimension of𝑚. We measure 𝑓𝑚 by calculating the total duration and the number of

exceptions in the spans of 𝑆𝑚 .

Encode the structure-related part of the trace. The trace structure shows the order and
hierarchy of service operations. We call it an invocation tree. Because there are many asynchronous

calls in the production environment, the order of spans at the same level on the trace can change [15].

Therefore, we focus on the invocation hierarchy of spans on the trace, rather than the strict order

of spans at the same level. For a trace 𝑡 , each layer of its invocation tree is encoded as a feature in

the vector representation. Each span in a layer is represented by its parent span, method name, and

argument (referred to as 𝑝𝑚𝑎). If there is no span for a trace at a certain depth, the corresponding

position is filled with null.

Dimension scalability and reduction.When new metrics are added or additional traces occur,

Trace Encoder can automatically expand the vector dimensions without the need for additional

manual intervention. For example, for newly introduced metrics, it only requires automatically

identifying the related sub span bag as mentioned earlier and performing the necessary statistics.

However, the vector expansionmechanism has a side effect of continuously increasing the dimension

of the trace vector. To address this, we have adopted a dimension reduction strategy. For the status-

related part, if it is observed that two metrics consistently have the same values for their dimensions

over a period of time, those dimensions are merged. For the structure-related part, the reason for

dimension redundancy is that a certain trace has a very deep call hierarchy but no longer occurs in

the future. To address this, we only focus on recent traces. If the dimensions with greater depth

have cleared corresponding values across all recent traces, those dimensions are removed.

4.2 System Bias Extractor
As mentioned in § 2.2, the runtime state of the system has a significant impact on sampling prefer-

ences. System Bias Extractor adaptively determines which metrics are more worthy of attention. It

assesses the anomaly degree of various metrics by comparing the current system metric values with

the expected values. It then generates a dimension preference vector that represents the preference

score of each metric at the present moment.

Assess the anomaly degree of metrics. As described in § 2.1, each metric𝑚 consists of a series

of time-series data, represented as 𝑚 = {(𝑡1, 𝑣1), ..., (𝑡𝑛, 𝑣𝑛)}. Our goal is to calculate online the

anomaly degree𝛼 of eachmetric at the current time 𝑡𝑘 , based on the historical time-series datawithin

a look-back window [𝑡1, ..., 𝑡𝑘−1]. We consider two alternative approaches: (i) statistical methods

and (ii) neural network models. Given that business operations in real production environments

often exhibit periodic patterns, it is crucial to learn the historical variations of the metrics in order

to better assess the current degree of fluctuations. Statistical methods such as boxplot [8] and

3-sigma detection [57] can only provide certain statistical measures based on historical data, which

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:8 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Current
Value vk

Look-back Window

Remainder

Trend

Expected
Value vk'

Linear
Model

Anomaly
Degree α ···

Preference Vector

p1

p2

p3

pn

Metric 3

Linear
Model

Fig. 6. An example of assessing the anomaly degree of metrics.

fail to learn the historical patterns. Therefore, we opt for the neural network model approach,

which can better learns the waveform patterns in historical data.

Due to the online nature of the System Bias Extractor, complex models such as LSTM [36] and

Transformer [41] variants are unable to meet the low latency requirements [11]. Therefore, we

need a lighter model to fulfill this task. Taking inspiration from recent advancements in time

series forecasting (TSF) [5], we have opted for a linear forecasting model. Zeng et al. [49] have

demonstrated that linear models outperform Transformer-based methods in time series prediction

tasks. We have adopted the DLinear algorithm [49], which combines a Decomposition scheme used

in Autoformer [42] and FEDformer [54] with linear layers, and made adjustments for our specific

task. This model takes a historical time series data window of a certain metric as input and outputs

the expected value of the current time point, denoted as 𝑣 ′
𝑘
. The difference between the actual

value 𝑣𝑘 and the expected value 𝑣 ′
𝑘
is used to measure the degree of the anomaly, represented as

𝛼 =
|𝑣′
𝑘
−𝑣𝑘 |

𝑚𝑎𝑥 (𝑣′
𝑘
,𝑣𝑘) . An example of assessing the anomaly degree of metrics is shown in Fig. 6.

Form the preference vector. After obtaining the current anomaly degree 𝛼𝑖 for each metric

𝑚𝑖 , we consider 𝛼𝑖 as the preference score 𝑝𝑖 for that metric. The preference scores of all metrics

M form the preference vector P for the current moment, which is represented as P = [𝑝1, ..., 𝑝𝑛].

4.3 System-Biased Sampler
The intuition behind System-Biased Sampler is that we prioritize traces that are more relevant to

the fluctuations within the system. To achieve this, we maintain a look-back window consisting

of recently collected traces. Based on the statistical measures of the traces within the look-back

window on each dimension, we calculate an attention score vector for the coming trace. We then

take the dot product of this attention score vector with the current system preference vector to

determine the system-biased sampling probability.

Calculate the attention score vector. During the sampling process, we maintain a dynamic

look-back window, denoted asW = [𝑡1, ..., 𝑡𝑘], which consists of the most recent 𝑘 trace vectors.

Here, we only consider the status-related part of each trace vector, denoted as 𝑡𝑖 = [𝑓1𝑖 , ..., 𝑓𝑛𝑖]. For
each dimension 𝑖 , we calculate the mean 𝜇𝑖 and standard deviation 𝜎𝑖 of the values taken by the

previous 𝑘 trace vectors in that dimension. When considering the coming trace 𝑡𝑘+1, the attention
score 𝑎𝑖 measures the increase in resource utilization in dimension 𝑖 compared to the historical

traces, using Equation 4.3. The attention scores for all dimensions on the coming trace form the

attention score vector, denoted as A = [𝑎1, ..., 𝑎𝑛].

𝑎𝑖 =
|𝑓𝑖𝑘+1 − 𝜇𝑖 |

𝜎𝑖
. (3)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:9

f1k

fnk

···

···f11

fn1

···
···

f(n+1)k

f(n+m)k

···

···f(n+1)1

f(n+m)1

···
···

· · ·

· · ·

f1k+1

fnk+1

···

f(n+1)(k+1)

f(n+m)(k+1)

···

Sampling
Probability

ps (tk+1)

Sampling
Probability

pd(tk+1)

Sampling
Result

Sampling
Result

AND / OR
Gate

θ > β

Y

N

Sampling
Decision

Look-back Window
Coming

Trace tk+1

System
Biased

Diversity
Biased

Current Sampling Rate θ , Budget Sampling Rate β

Fig. 7. The process of the dynamic voting mechanism that takes the budget into account to combine the
sampling results from the two previous samplers.

Calculate the system-biased sampling probability.When a coming trace obtains a higher

attention score in dimensions with higher preference scores, it is more deserving of being kept.

Once we obtain the attention score vector A(𝑡𝑘+1) for the coming trace 𝑡𝑘+1, we perform a dot

product with the current preference vector P, and then apply a 𝑡𝑎𝑛ℎ function to map the dot

product result to the [0, 1] range. This yields the system-biased sampling probability 𝑝𝑠 (𝑡𝑘+1).

𝑝𝑠 (𝑡𝑘+1) =
2

1 + 𝑒−2P·A(𝑡𝑘+1)
− 1. (4)

4.4 Diversity-Biased Sampler
The goal of Diversity-Biased Sampler is to identify edge-case traces and assign them a higher

sampling probability. To achieve this, we cluster the trace vectors within the look-back window

and calculate the mass of each cluster. When a new trace arrives, we locate the closest cluster and

calculate the diversity-biased sampling probability for the coming trace based on its similarity to

the closest cluster and the mass of the cluster.

Cluster traces within the look-back window. To calculate the uncommon degree of the

coming trace, we first establish patterns for previous traces. For a look-back windowW = [𝑡1, ..., 𝑡𝑘],
we cluster the trace vectors within it. Assuming we obtain n clusters C = {𝑐1, ..., 𝑐𝑛} after clustering,
we calculate the number of traces included in each cluster, which serves as the mass of each cluster,

denoted asM𝑎 = {𝑚𝑎1, ...,𝑚𝑎𝑛}.
Calculate the diversity-biased sampling probability. For the coming trace 𝑡𝑘+1, we calculate

its Jaccard similarity [29] with each cluster and consider the cluster with the highest similarity as

the closest cluster, denoted as 𝑐′
𝑘+1. The mass of 𝑐′

𝑘+1, denoted as𝑚𝑎′
𝑘+1, reflects the commonality of

𝑐′
𝑘+1. The Jaccard similarity 𝑠𝑖 (𝑡𝑘+1) between 𝑡𝑘+1 and 𝑐′𝑘+1 reflects their matching degree. Therefore,

the smaller the value of𝑚𝑎′
𝑘+1 and 𝑠𝑖 (𝑡𝑘+1), the larger the uncommonness of the coming trace 𝑡𝑘+1.

We use the following equation to calculate the diversity-biased sampling probability 𝑝𝑑 (𝑡𝑘+1).

𝑝𝑑 (𝑡𝑘+1) =
1

𝑚𝑎′
𝑘+1∗𝑠𝑖 (𝑡𝑘+1)∑𝑘+1

𝑖=1
1

𝑚𝑎′
𝑖
∗𝑠𝑖 (𝑡𝑖)

. (5)

4.5 Composite Sampler
Composite Sampler provides a more comprehensive measure of the importance of a trace by taking

into account both system state and trace diversity. It also considers the impact of the budget on the

sampling strategy and utilizes a dynamic voting mechanism to make the final sampling decision.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:10 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Table 1. Experiment Datasets Overview.

Dataset Microservice
Benchmark

Trace
Number

Metric
Number

Batch
Number

Uncommon
Label Rate

Problem-related
Label Rate

Fault Types
Number

A 13 Production

Microservice systems

909,797 121 62 2.5% 2.5% 6

B OnlineBoutique and

TrainTicket

112,000 32 56 5.0% 5.0% 5

After System-Biased Sampler and Diversity-Biased Sampler provide their respective sampling

probabilities 𝑝𝑠 (𝑡) and 𝑝𝑑 (𝑡) for the coming trace 𝑡 , TraStrainer generates a random number between

[0, 1]. It then compares this random number to 𝑝𝑠 (𝑡) and 𝑝𝑑 (𝑡) separately. If the sampling probability

𝑝 (𝑡) for a certain aspect is greater than the random number, the sample result for that aspect is

considered "True", otherwise it is considered "False".
Dynamic Voting Mechanism. In order to align the overall sampling rate with the expected

budget, we have implemented a dynamic voting mechanism to combine the sampling results from

the two previous samplers. Using a look-back window, we dynamically track the recent sampling

frequency, denoted as 𝜃 , and compare it with the budget sampling rate, denoted as 𝛽 . If 𝜃 is greater

than 𝛽 , we need to enforce stricter sampling rules. In this case, we utilize an AND gate as the voting

mechanism, meaning that TraStrainer will only sample the trace when both samplers yield a "True"
result. On the other hand, if 𝜃 is smaller than 𝛽 , we can relax the sampling rules. In this scenario,

we employ an OR gate as the voting mechanism, indicating that TraStrainer will sample the trace

as long as at least one sampler produces a "True" result, as shown in Fig. 7. The sampling decision

ultimately determines whether the coming trace 𝑡 will be stored or discarded.

5 EXPERIMENT EVALUATION
We conducted experiments to evaluate how well TraStrainer performs in biasing sampling towards

problem-related and edge-case traces. We also assessed its effectiveness for downstream root cause

analysis tasks and analyzed the contribution of considering both sampling factors simultaneously.

Through these studies, we aim to answer the following research questions(RQs).

• RQ1: How does the quality of the traces sampled by TraStrainer compare to the baseline ap-

proaches?

• RQ2: How effective is TraStrainer in downstream trace-based root cause analysis compared with

baseline approaches?

• RQ3: How much does considering both system runtime state and trace diversity contribute to

the effectiveness of TraStrainer?
• RQ4: How efficient is the sampling of TraStrainer?

5.1 Datasets
We evaluated TraStrainer using two datasets, namely A and B. Dataset A consists of real-world

data generated from 13 production microservice systems of Huawei. Dataset B is derived from two

widely-used microservices benchmarks, OnlineBoutique [12] and TrainTicket [9]. Table 1 shows

the detailed information of the two datasets.

Dataset A Setup. The dataset is generated from 13 real microservice systems provided by

Huawei. It involves 284 services and 1327 nodes. We collected trace data and metric data from 62

incidents that occurred between April 2023 and August 2023, resulting in 62 batches. The incidents

include various types of failures such as high CPU load, network delay, slow SQL execution, failed

third-party package calls, code logic anomalies, and thread pool exhausted. The dataset comprises

a total of 909,797 traces and 121 metrics. SREs and technical experts annotated the uncommon

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:11

and problem-related traces, with an average label rate of 2.5%. They also annotated the actual root

causes for each batch to evaluate the accuracy of downstream root cause analysis.

Dataset B Setup. The dataset is generated from two open-source microservice benchmarks:

OnlineBoutique [12] and TrainTicket [9], which have been widely used in previous studies [6, 22,

45, 48, 50, 56]. We deployed them on a Kubernetes [1] platform consisting of 12 virtual machines.

Each virtual machine is equipped with an 8-core 2.10 GHz CPU, 16GB memory, and runs on Ubuntu

18.04 OS. To collect traces, we utilized Opentelemetry Collector [31] and stored them in Grafana

Tempo [13]. In order to simulate latency or reliability issues in the microservice system, we injected

a total of 56 faults using Chaosblade [4] into these two microservice benchmarks. We collected

corresponding trace data and metric data, resulting in 56 batches. The fault types included CPU

contention, CPU consumed, network delay, code exception, and error return. The dataset comprises

a total of 112,000 traces and 32 metrics. We annotated the uncommon traces and problem-related

traces based on the injected fault positions and types, with an average label rate of 5.0%.

5.2 Baselines
Baseline Sampling Approaches. To evaluate the effectiveness and efficiency of TraStrainer, we
compare it with four baseline sampling methods as follows.

• Random is the head-based sampling approach that decides whether to capture each trace with

equal probability.

• HC [20] is an offline tail-based sampling approach using hierarchical clustering, which group

traces by label counting to conduct sampling.

• Sifter [21] is an online tail-based sampling approach, which approximates the distributed system’s

common-case behavior and samples new traces based on how well represented they are.

• Sieve [16] is an online tail-based sampling approach, which uses robust random cut forest (RRCF)

to detect uncommon traces and sample them with a high probability.

Baseline Downstream Analysis Approaches. Root cause analysis (RCA) is a common task

performed in downstream analysis. To evaluate the impact of sampling methods on the analysis

results, we combined the following three state-of-the-art trace-based RCA methods with different

sampling approaches.

• TraceAnomaly [26] leverages deep learning to learn normal trace patterns offline, and then

detects abnormal traces and identifies root causes online.

• TraceRCA [23] utilizes spectrum analysis to identify root cause services by analyzing the propor-

tion of normal and abnormal invocations.

• MicroRank [45] identifies and ranks root causes by combining personalised Pagerank method

and spectrum analysis.

Variants of TraStrainer. To evaluate the impact of combining system state and trace diversity,

we create the following two variants and conduct ablation experiments.

• TraStrainer w/oM is a variant that only considers trace diversity to set sampling preferences.

We achieve this by using the sampling results from the Diversity-Biased Sampler as the final

sampling outcome.

• TraStrainer w/o D is a variant that considers only the system runtime state to set sampling

preferences. We achieve this by using the sampling results from the System-Biased Sampler as

the final sampling outcome.

5.3 Evaluation Metrics
To evaluate the quality of the sampling results, we rely on two metrics: proportion and diversity.

Both of them have been widely utilized in previous studies [11, 16, 51] and are defined as follows.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:12 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

• Proportion (𝑃𝑅𝑂) reflects the ability of an approach to bias towards valuable traces. Let 𝑇 be

the total number of labeled traces, and 𝑡 denote the number of labeled traces that are sampled.

The proportion of labeled traces can be calculated as: 𝑃𝑅𝑂 = 𝑡
𝑇
. In our experiments, we had

three variants based on different labels: the proportion of uncommon traces, the proportion of

problem-related traces, and the proportion of traces that are both uncommon and problem-related.

• Diversity (𝐷𝐼𝑉) reflects the ability of an approach to provide a representative sample. We denote

the sampled traces obtained after sampling as 𝑆𝑇 = {𝑠𝑡1, ..., 𝑠𝑡𝑛}. Clustering them based on

execution path yields trace patterns 𝑇𝑃 = {𝑡𝑝1, ..., 𝑡𝑝𝑚}. The diversity of the sampling results is

simply the number of trace patterns obtained, which is denoted as 𝐷𝐼𝑉 =𝑚.

To assess the effectiveness of downstream root cause analysis, we employ three commonly used

evaluation metrics: 𝐴@1, 𝐴@3, and𝑀𝑅𝑅. These metrics serve as standard measures for evaluating

the performance of RCA methods [25, 45] and are defined as follows.

• Top-k accuracy (𝐴@𝑘) represents the probability that the true root cause is included in the

top-k positions of the results. Let 𝑟𝑐𝑖 be the root cause of the i-th issue, 𝑅𝑎𝑛𝑘𝑘𝑖 be the top-k result

list for the 𝑖th issue. 𝐴@𝑘 can be calculated as: 𝐴@𝑘 = 1

|𝐼 |
∑ |𝐼 |

𝑖=1

(
𝑟𝑐𝑖 ∈ Rank

𝑘
𝑖

)
. Higher values of

𝐴@𝑘 indicate better accuracy.

• Mean reciprocal rank (𝑀𝑅𝑅) represents the inverse of the rank of the first identified root cause.
If the actual root cause is not present in the result list, the rank is considered to be infinity and

its reciprocal is zero. Let 𝑟𝑖 be the rank of the root cause in the returned list for the 𝑖th issue. The

calculation for𝑀𝑅𝑅 is:𝑀𝑅𝑅 = 1

|𝐼 |
∑ |𝐼 |

𝑖=1
1

rs 𝑖
. Higher values of𝑀𝑅𝑅 indicate better accuracy.

5.4 RQ1: SamplingQuality of TrasTrainer.
To evaluate the sampling quality of TraStrainer, we compare its sampling results with four base-

line methods. Our evaluation of sampling quality is divided into two aspects: bias sampling and

representative sampling.

5.4.1 Bias Sampling. Our first set of experiments evaluates TraStrainer’s ability to bias towards

uncommon traces and problem-related traces. We conducted experiments on both dataset A and

B. To investigate the impact of different budgets, we set five gradient budget sampling rates: 0.1%,

1%, 2.5%, 5%, and 10%. These rates encompass budgets that are both higher and lower than the label

rate. As the online sampling approach does not allow for precise fixed sampling rates, we followed

the approach used in previous study [16]. If the final sampling quantity exceeded the budget, we

removed a portion of the sampled traces in reverse order until the sampling result met the budget.

Conversely, if the sampling quantity fell short of the budget, we randomly selected additional traces

from the unsampled ones to match the budget. We conducted repeated experiments with the same

settings for each batch and recorded the average proportion of the results.

Bias towards uncommon traces. Fig. 8 (a1) and (b1) show the proportions of uncommon traces

sampled by different approaches across various budget settings in two datasets. TraStrainer and
Sieve exhibit similar performance, outperforming the other three approaches. Random sampling,

with no specific preference, achieves proportions roughly equivalent to the budget sampling rate.

HC and Sifter, which solely consider trace structure while disregarding time delays, lack the ability

to identify uncommon traces that only differ in execution time. Therefore, their proportions on

both datasets do not exceed 0.7.

We conducted a detailed comparison between TraStrainer and Sieve, both of which consider

both time delays and structure during encoding, resulting in superior recognition of uncommon

traces compared to other methods. When the budget is low, TraStrainer performs better, thanks to

its metric-based encoding approach, which effectively distinguishes anomalies. However, when

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:13

Fig. 8. Proportions of uncommon, related, and uncommon-related traces sampled by different approaches
across different budget settings in two datasets.

the budget is around the label rate (2.5% in dataset A and 5% in B), TraStrainer’s proportion is

lower than Sieve. This is because, in addition to bias towards uncommon traces, TraStrainer also
exhibits a bias towards problem-related traces, which include some common traces. When the

budget exceeds twice the label rate, both TraStrainer and Sieve achieve a proportion of 1, meaning

all uncommon traces are captured.

Bias towards problem-related traces. Fig. 8 (a2) and (b2) show the proportions of problem-

related traces. TraStrainer outperforms the four baselines in both datasets significantly. Sieve, Sifter,

and HC exhibit similar proportion growth to random when the budget is high, with proportions

below 0.5 in both datasets. TraStrainer takes system runtime state into account when setting

sampling preferences. When the budget equals the label rate, the proportion for problem-related

traces is around 0.6. When the budget is twice the label rate, the proportion approaches 1.0, meaning

that all problem-related traces are captured.

Bias towards uncommon problem-related traces. Fig. 8 (a3) and (b3) show the proportions

of traces that are both uncommon and problem-related. TraStrainer outperforms the baseline

methods with better results even at lower budgets. When the budget rate equals the label rate (1%

in dataset A and 2.5% in B), TraStrainer achieves a proportion above 0.9 in both datasets, while

the other baselines remain below 0.55. This indicates that TraStrainer not only prefers uncommon

traces at lower budgets but also shows a stronger preference for problem-related traces within the

uncommon traces.

5.4.2 Representative Sampling. Our next set of experiments assess the diversity of TraStrainer’s
sampling results and its capability to prioritize underrepresented and abnormal request types.

Similar to the previous experiments, we conducted comparisons with baselines on two datasets

at various budget sampling rates. Additionally, we evaluated the sampling effectiveness of two

variants of TraStrainer.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:14 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Table 2. Comparison of the result diversity of different sampling approaches across different budget settings.

Approach

DataSet A DataSet B
0.1% 1.0% 2.5% 5.0% 10.0% 0.1% 1.0% 2.5% 5.0% 10.0%

Random 5.95 28.03 36.77 48.42 61.68 6.61 21.16 27.77 32.79 37.56

HC 7.27 28.11 40.68 52.77 67.60 9.04 27.56 33.86 39.02 41.84

Sifter 9.24 44.31 58.07 74.23 85.62 12.05 35.50 43.85 44.02 45.06

Sieve 13.70 98.24 151.27 155.10 161.24 13.70 51.27 54.44 54.44 54.44

TraStrainer w/o M 15.7 101.54 158.27 162.40 166.35 14.92 53.50 54.44 54.44 54.44
TraStrainer w/o D 8.06 28.53 42.66 55.26 73.23 6.05 17.73 23.03 27.34 32.45

TraStrainer 14.65 95.87 139.84 153.61 159.15 14.34 47.34 53.42 54.44 54.44

Fig. 9. Distribution of different APIs in the sampling results.

Diversity of the sampling result. Table 2 shows the diversity of sampling results. It can be

observed that TraStrainer w/oM achieves the best performance in both datasets, demonstrating

the effectiveness of TraStrainer’s metric-based trace encoding in distinguishing different trace

patterns and ensuring fair sampling. Sieve follows closely behind as it considers both structure

and latency during encoding. The diversity of TraStrainer’s sampling results is slightly lower than

the previous two approaches because TraStrainer also takes preferences for related traces into

account. On average, TraStrainer’s diversity is only slightly lower than TraStrainer w/o M by less

than 5%. HC and Sifter, lacking consideration for latency, exhibit noticeably lower diversity in their

sampling results compared to the previous three approaches. TraStrainer w/o D, which does not

consider diversity preferences, shows no clear pattern in the diversity of its sampling results.

Representative ability. We selected a batch from dataset A and B, respectively. In dataset A,

the traces consist of 8 different high-level API calls, with the following distribution ratios: 41%,

12%, 11%, 10%, 9%, 7%, 6%, and 4%. Among them, API-4 and API-8 are considered as exceptional

interfaces. In dataset B, the traces consist of 5 different high-level API calls, with the following

distribution ratios: 68%, 11%, 9%, 8%, and 4%. API-4 is considered as an exceptional interface in

this case. We conducted 50 repeated experiments using the same setup and recorded the average

distribution ratios of the sampling results for each approach.

Fig. 9 shows the distribution ratios of different APIs in the sampling results. It can be observed

that TraStrainer enhances the representation of less frequently used APIs, resulting in a more

balanced sampling. Additionally, considering the system’s state, TraStrainer also improves the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:15

Table 3. Comparison of the effects of different sampling approaches in downstream root cause analysis.

RCA
Approach

Sampling
Approach

A@1 A@3 MRR
0.1% 1.0% 2.5% 0.1% 1.0% 2.5% 0.1% 1.0% 2.5%

TraceAnomaly

Random 10.71 9.26 16.67 44.73 57.41 57.41 0.2820 0.3503 0.3997

HC 9.26 12.96 18.52 37.04 42.59 55.56 0.2590 0.3664 0.3747

Sifter 11.67 24.07 16.67 37.04 57.41 62.96 0.2753 0.4025 0.4145

Sieve 8.81 18.52 29.63 44.44 53.70 57.41 0.2620 0.3762 0.4383

TraStrainer w/oM 11.67 20.37 22.22 45.15 51.85 55.56 0.2903 0.3722 0.4068

TraStrainer w/o D 12.96 38.89 44.44 49.81 77.78 75.93 0.3485 0.5948 0.6247

TraStrainer 46.30 51.61 54.84 66.67 79.19 87.10 0.5707 0.6438 0.7151

TraceRCA

Random 7.41 20.37 29.63 40.74 61.11 68.52 0.2525 0.4123 0.4991

HC 9.26 24.07 24.07 46.30 62.96 62.96 0.2546 0.4324 0.4627

Sifter 8.67 19.63 25.19 37.04 55.56 61.11 0.2449 0.4272 0.4836

Sieve 18.52 31.48 38.89 42.59 51.85 57.41 0.3008 0.4157 0.4873

TraStrainer w/oM 18.52 33.33 35.19 44.44 55.56 55.56 0.3191 0.4432 0.4642

TraStrainer w/o D 24.07 55.56 55.56 38.89 81.48 77.78 0.3650 0.6880 0.6843

TraStrainer 55.56 55.56 58.06 70.37 85.19 89.63 0.6265 0.7019 0.7510

MicroRank

Random 5.56 16.67 27.78 20.37 50.00 61.11 0.1571 0.3423 0.4352

HC 7.41 18.52 22.22 27.78 46.30 51.85 0.1954 0.3398 0.3731

Sifter 5.56 18.52 27.78 23.42 46.30 61.11 0.1605 0.3414 0.4358

Sieve 9.26 25.83 35.19 20.37 58.15 62.96 0.1657 0.4246 0.4963

TraStrainer w/oM 12.96 16.67 24.07 42.59 42.59 55.56 0.2994 0.3241 0.4012

TraStrainer w/o D 29.63 42.59 46.30 74.04 68.52 72.22 0.5228 0.5463 0.5509

TraStrainer 42.59 45.16 50.00 77.74 78.52 82.26 0.5509 0.5889 0.6556

representation of APIs that are related to system issues and experience deterioration. In comparison,

HC and Sifter only slightly increase the representation of low-frequency APIs, while Sieve achieves

balanced sampling results but fails to enhance the representation of deteriorating APIs.

5.5 RQ2: Effectiveness of TrasTrainer for Downstream Root Cause Analysis.
Root cause analysis (RCA) is a typical downstream analysis task. We evaluate the impact of sampling

strategies on the effectiveness of RCA approaches. We use the sampled traces obtained through the

sampling method as input for the RCA method to combine them, conducting experiments on two

datasets. To explore the performance of sampling at different budgets, we conducted experiments

at budget sampling rates of 0.1%, 1.0%, and 2.5%. The average results on the two datasets are shown

in Table 3. It is evident that the variant employing TraStrainer as the sampling strategy achieves

the best results for each RCA methods, in terms of 𝐴@1, 𝐴@3, and𝑀𝑅𝑅.

In various variants of TraceAnomaly, TraStrainer-based approach significantly improved 𝐴@1,

𝐴@3, and𝑀𝑅𝑅 by 33.78%, 26.88%, and 31.45%, respectively. TraceAnomaly employs a VAE-based

model to detect anomalies and locate root causes, and the quality of the traces used to train this

VAE-based model has a significant impact on root cause localization. We observed that when the

budget is low, variants of the baselines HC, Sifter, and Sieve performed poorly, even slightly worse

than the results based on random sampling. Further analysis of intermediate results revealed that in

this phase, the baselines primarily obtained abnormal traces, making it difficult for the VAE-based

model to learn normal trace patterns effectively, thus hindering accurate root cause localization.

TraStrainer, on the other hand, focuses not only on abnormal traces but also on problem-related

traces, enabling better results with lower sampling budgets. As the sampling budget increases, the

performance of all variants improves. However, the baselines’ 𝐴@1 remains consistently below

30%, while TraStrainer achieves an 𝐴@1 of 54.84% and an𝑀𝑅𝑅 of 0.7151.

Both TraceRCA and MicroRank employ spectrum analysis, which means that a microservice

with more abnormal traces and fewer normal traces is more likely to be the root cause. In various

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:16 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

Fig. 10. Distribution of different APIs in the sampling results of different variants.

variants of these two methods, TraStrainer-based approach improved 𝐴@1, 𝐴@3, and 𝑀𝑅𝑅 by

31.48%, 38.34%, and 28.96%, respectively. We can observe that variants of HC and Sifter show

analysis results similar to random sampling methods at various budgets. This is because TraceRCA

and MicroRank determine abnormal invocations based solely on latency, and these two sampling

approaches consider only trace structure during encoding, thus providing no assistance to root

cause analysis. As for the Sieve-based approach, it performs poorly at lower budgets because

spectrum analysis weaves clues from both normal and anomalous traces for root cause localization,

and the Sieve-based approach cannot provide a sufficient number of normal traces. TraStrainer
consistently achieves good analysis results across different budgets, maintaining an𝐴@3 above 70%.

This is due to TraStrainer’s more comprehensive sampling preferences. Even with lower budgets,

it discards traces unrelated to the problem rather than valuable traces for analysis, resulting in

acceptable analysis performance.

5.6 RQ3: Contribution of the Combination of System Status and Trace Diversity.
We performed ablation experiments to examine the impact of combining system state and trace

diversity in the sampling preference setting. We created two variants: TraStrainer w/o M, which

solely focuses on bias sampling using trace diversity, and TraStrainer w/oD, which solely considers

system state. We replicated partial experiments from RQ1 and RQ2 on these two variants and

analyzed the experimental results.

Fig. 10 shows the distribution of different APIs in the sampling results sampled by various

variants in dataset B. It is evident that the sampling results of TraStrainer w/o D exhibit a signif-

icant imbalance in the distribution ratios of different APIs. Specifically, the distribution ratio of

deteriorating interface API-4 exceeds 70%, while the underrepresented API-5 is completely absent

in the samples. Although TraStrainer w/o M produces relatively balanced sampling results on

average, it fails to bias towards the more crucial deteriorating API-4. On the other hand, TraStrainer
not only enhances the diversity of the sampling results but also exhibits a stronger inclination

towards the problematic API.

Table 3 shows the effectiveness comparison of different variants of TraStrainer in downstream

analysis. It can be seen that TraStrainer w/o D performs better overall than TraStrainer w/oM,

suggesting that prioritizing problem-related traces yield better results for analysis tasks compared

to solely focusing on uncommon traces. When analyzing the effects under different budgets, we

notice that at a low budget (0.1%), TraStrainer w/o D has a significantly lower 𝐴@1 compared to

TraStrainer. However, at a high budget (2.5%), TraStrainer w/o D approaches the performance of

TraStrainer. This is because TraStrainer w/o D’s sampling preference is solely based on problem-

relatedness without bias towards uncommon abnormal traces, potentially missing root cause traces

at low budgets. As the budget increases, TraStrainer w/o D captures most of the problem-related

traces including the culprits, resulting in a noticeable improvement in performance. On the other

hand, TraStrainer, which considers both system state and trace diversity, achieves better analysis

performance across all budgets. This finding further confirms the motivation, as described in § 2.2,

of combining system state and trace diversity to enhance the effectiveness of trace sampling.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:17

Fig. 11. Efficiency Validation of TraStrainer.

5.7 RQ4: Efficiency of TraStrainer.
We evaluated the efficiency of TraStrainer through a series of experiments. It is worth noting that

in TraStrainer, the System-Bias Extractor and Trace Sampler run in parallel, and Trace Sampler only
needs to read the current preference vector. During the efficiency validation, we deployed the

sampler part of TraStrainer in a single-process form and conducted it on an Intel Xeon Gold 5318Y

2.10GHz CPU. We measured the average time it took for each trace to go through TraStrainer and
make a sampling decision.

Fig. 11(a) shows the distribution of sampling latencies for traces from the two datasets. It is

evident that TraStrainer generally exhibits smaller sampling latencies compared to the baselines,

ranging from 0.28ms to 14.29ms. The maximum latency is 40.82% to 50.16% lower than the baselines.

Two factors will affect the sampling latency: trace size and the number of metrics. Fig. 11(b) and (c)

demonstrate the impact of these factors on TraStrainer’s sampling latency. Following the principle

of controlling variables, we fixed the metric number at 75 when investigating the effect of trace size,

and fixed the trace size at 50 when examining the impact of metric number. It can be observed that

sampling latency exhibits a linear increase with trace size, but the maximum value remains below

15ms. When the metric number is low, the sampling latency also increases linearly. However, when

the metric number exceeds 100, the growth rate of sampling latency becomes much slower. This is

because TraStrainer employs dimension reduction strategies to prevent dimension explosion.

From the above analysis, it can be seen that TraStrainer is efficient enough for online sampling.

Additionally, the dimension reduction strategy of TraStrainer can effectively improve the efficiency

when there are a large number of metrics.

6 LIMITATIONS
In this work, we only implement biased sampling in a tail-based way. However, the most recent

research [52] on trace sampling introduces the concept of retroactive sampling [52], which lazily

retrieves trace data to perform biased sampling at earlier stages of the trace lifecycle, aiming to

improve the efficiency of biased sampling. Nonetheless, current retroactive sampling approach also

solely biases towards edge-cases. Our work proposes a more effective method for setting sampling

preferences. We believe that this can be beneficial for various types of biased sampling, not only

tail-based sampling but also retroactive sampling.

7 THREATS TO VALIDITY
The main threats to internal validity are associated with the implementation of baselines. For Sieve,

we utilize its open-source implementation directly. However, since HC and Sifter lack open-source

implementations, we carefully develop our own implementations and use exactly the same libraries

based on relevant papers. Additionally, previous work has mentioned that online samplers make

essentially random sampling decisions in the initial sampling phase due to the random initialization

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

22:18 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

of the internal model [16, 21]. To facilitate result comparison, we allow each online sampler to

undergo a warm-up period to ensure that the model is initialized before testing the sampling

effectiveness. During the experiments, we use 10% of the traces to warm up the sampler.

The threats to external validity mainly lie in the representativeness of the datasets. Although we

used data from 13 production microservice systems and two open-source microservice benchmarks

for validation, the number of fault types we tested was still limited (7 in total). There could be

more complex fault types in other microservice systems, so further testing is needed to assess the

effectiveness of TraStrainer in more complex scenarios.

8 RELATEDWORK
Distributed traces have become the primary source of observability and analysis for microservice

systems [39], widely utilized for profiling, diagnosing, and debugging. Additionally, due to the large

amount of trace data involved, sampling becomes essential in distributed tracing [16]. Below, we

provide a brief summary of current methods for trace-based analysis and trace sampling techniques.

Trace-based analysis approaches. In microservice systems, trace analysis serves various

purposes like anomaly detection (AD) and root cause analysis (RCA). Nedelkoski et al.[28] in-

troduced a method for anomaly detection that employs a multimodal LSTM network, allowing

the model to learn from trace data. TraceAnomaly [26] proposes an anomaly detection and root

cause localization approach using Variational Autoencoders (VAE) with trace data. TraceRCA [23]

and MicroRank [45] identifies root cause services by examining the ratio of normal to abnormal

invocations and applying spectrum analysis. Sage [10] utilizes causal Bayesian networks and em-

ploys graphical variational autoencoders to pinpoint root cause microservices. FSF [35] utilizes

knowledge of failure propagation and the client-server communication model to deduce root causes.

Trace sampling approaches. Uniform random sampling approach has been utilized by tracing

systems like Dapper [37], Jaeger [17] and Zipkin [2]. However, this random sampling method fails

to guarantee the quality of the sampled traces. Consequently, subsequent methods have introduced

several biased sampling approaches. Las-Casas et al. [20] propose a hierarchical clustering method

PERCH to bias the sampling to maximize the diversity of traces based on label counting. However,

this approach was primarily designed for offline sampling. Sifter [21] performs an online sampling

method, which approximates the common-casemodel of the traces and biases towards traces that are

poorly represented by this model. Sieve [16] provides an online sampler that aims to bias sampling

towards uncommon traces by using robust random cut forest. TraceCRL [51] utilizes contrastive

learning and graph neural network techniques to encode trace data into vectors, enabling the

sampling of traces based on the diversity of these vector representations. SampleHST [11] biases

towards the edge-cases based on the distribution of mass scores obtained from a forest of Half

Space Trees (HST). Hindsight [52] describes and implements retroactive sampling for capturing

traces of symptomatic edge-cases. We can see that previous biased trace sampling approaches were

merely different variations based on the fundamental principle of being biased towards edge-case

traces, without introducing new perspectives for consideration.

Perspectives of TraStrainer. Compared to existing trace sampling methods, TraStrainer takes
a more comprehensive approach to sampling preferences. It not only considers trace diversity but

also takes into account the impact of system runtime state on sampling preferences. Previous trace

sampling methods were limited to using trace information alone to set sampling preferences. In

contrast, TraStrainer considers the information of both the traces and the system state metrics,

utilizing multiple modalities of information for better sampling results. Additionally, TraStrainer is
designed with the requirements of downstream trace-based analysis methods [10, 23, 26, 28, 45],

providing higher-quality sampled data for these methods.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:19

9 CONCLUSION
In this study, we introduce TraStrainer, an online biased sampler that takes into account sampling

preferences more comprehensively. The core idea behind TraStrainer is to consider not only trace

diversity but also system runtime state, allowing for dynamic adjustment of sampling preferences.

TraStrainer employs a more interpretable and comprehensive encoding method for traces and

utilizes a dynamic voting mechanism to generate integrated sampling decisions. We construct

two datasets and conduct a comprehensive evaluation of TraStrainer, including the quality of

sampling results, performance in downstream tasks, and sampling efficiency. The experimental

results demonstrate that compared to four baseline methods, TraStrainer can identify more valuable

traces within the same budget and improve the performance of downstream analysis methods.

Furthermore, TraStrainer exhibits higher efficiency than two other online biased.

Artifact Availability. The basic implementation of TraStrainer are publicly available at [40].

ACKNOWLEDGMENTS
The research is supported by the Guangdong Basic and Applied Basic Research Foundation

(No.2023B1515020054) and the National Natural Science Foundation of China (No.62272495). This

research is also sponsored by Huawei. The corresponding author is Pengfei Chen.

REFERENCES
[1] 2023. Kubernetes Homepage. http://kubernetes.io/. [Online].

[2] 2023. Zipkin Homepage. https://zipkin.io. [Online].

[3] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. 2016. Debugging distributed systems. Commun.
ACM 59, 8 (2016), 32–37.

[4] Chaosblade. 2023. Chaosblade. https://github.com/chaosblade-io/chaosblade. Accessed Jan. 6, 2023.

[5] Chris Chatfield. 2000. Time-series forecasting. CRC press.

[6] Yufu Chen, Meng Yan, Dan Yang, Xiaohong Zhang, and Ziliang Wang. 2022. Deep Attentive Anomaly Detection for

Microservice Systems with Multimodal Time-Series Data. In ICWS 2022. IEEE, 373–378.
[7] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. 2007. {X-Trace}: A pervasive network tracing

framework. In 4th USENIX Symposium on Networked Systems Design & Implementation (NSDI 07).
[8] Michael Frigge, David C Hoaglin, and Boris Iglewicz. 1989. Some implementations of the boxplot. The American

Statistician 43, 1 (1989), 50–54.

[9] FudanSELab. 2023. TrainTicket. https://github.com/FudanSELab/train-ticket. Accessed Jan. 6, 2023.

[10] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021. Sage: Practical and Scalable ML-Driven

Performance Debugging in Microservices. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing

Machinery, New York, NY, USA, 135–151. https://doi.org/10.1145/3445814.3446700

[11] Alim Ul Gias, Yicheng Gao, Matthew Sheldon, José A. Perusquía, Owen O’Brien, and Giuliano Casale. 2022. SampleHST:

Efficient On-the-Fly Selection of Distributed Traces. arXiv:2210.04595 [cs.DC]

[12] GoogleCloudPlatform. 2023. OnlineBoutique. https://github.com/GoogleCloudPlatform/microservices-demo. Accessed

Jan. 6, 2023.

[13] Grafana. 2023. Grafana Tempo. https://github.com/grafana/tempo. [Online].

[14] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding, Tao Xie, and Liangfei Su. 2020. Graph-

Based Trace Analysis for Microservice Architecture Understanding and Problem Diagnosis. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,

1387–1397. https://doi.org/10.1145/3368089.3417066

[15] Lexiang Huang and Timothy Zhu. 2021. Tprof: Performance Profiling via Structural Aggregation and Automated

Analysis of Distributed Systems Traces. In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)

(SoCC ’21). Association for Computing Machinery, New York, NY, USA, 76–91. https://doi.org/10.1145/3472883.3486994

[16] Zicheng Huang, Pengfei Chen, Guangba Yu, Hongyang Chen, and Zibin Zheng. 2021. Sieve: Attention-based Sampling

of End-to-End Trace Data in Distributed Microservice Systems. In 2021 IEEE International Conference on Web Services
(ICWS). 436–446. https://doi.org/10.1109/ICWS53863.2021.00063

[17] jaeger. 2023. Jaeger. https://www.jaegertracing.io/. Accessed: 2023/7/14.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

http://kubernetes.io/
https://zipkin.io
https://github.com/chaosblade-io/chaosblade
https://github.com/FudanSELab/train-ticket
https://doi.org/10.1145/3445814.3446700
https://arxiv.org/abs/2210.04595
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/grafana/tempo
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1145/3472883.3486994
https://doi.org/10.1109/ICWS53863.2021.00063
https://www.jaegertracing.io/

22:20 H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen, and C. Sun

[18] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill

Schaller, Pingjia Shan, Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017.

Canopy: An End-to-End Performance Tracing And Analysis System. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA, 34–50.

https://doi.org/10.1145/3132747.3132749

[19] Kmaork. 2023. Hypno. https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-

cloudwatch/configure-cloudwatch-ec2-on-premises.html. Accessed Jan. 6, 2023.

[20] Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and Rodrigo Fonseca. 2018. Weighted Sampling of Execution

Traces: Capturing More Needles and Less Hay. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad,

CA, USA) (SoCC ’18). Association for Computing Machinery, New York, NY, USA, 326–332. https://doi.org/10.1145/

3267809.3267841

[21] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan Mace. 2019. Sifter: Scalable Sampling for

Distributed Traces, without Feature Engineering. In Proceedings of the ACM Symposium on Cloud Computing (Santa

Cruz, CA, USA) (SoCC ’19). Association for Computing Machinery, New York, NY, USA, 312–324. https://doi.org/10.

1145/3357223.3362736

[22] Xing Li, Yan Chen, and Zhiqiang Lin. 2019. Towards automated inter-service authorization for microservice applications.

In SIGCOMM 2019. ACM, 3–5.

[23] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang, Yanjun Wu, Long Jiang, Leiqin Yan, Zikai

Wang, Zhekang Chen, Wenchi Zhang, Xiaohui Nie, Kaixin Sui, and Dan Pei. 2021. Practical Root Cause Localization

for Microservice Systems via Trace Analysis. In 2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS). 1–10. https://doi.org/10.1109/IWQOS52092.2021.9521340

[24] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Performance Issues with Causal Graphs in

Micro-service Environments. In ICSOC 2018. Springer, 3–20. https://doi.org/10.1007/978-3-030-03596-9_1

[25] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. 2021.

MicroHECL: High-Efficient Root Cause Localization in Large-Scale Microservice Systems. In Proceedings of the 43rd
International Conference on Software Engineering: Software Engineering in Practice (Virtual Event, Spain) (ICSE-SEIP ’21).
IEEE Press, 338–347. https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

[26] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng,

Wenman Xue, and Dan Pei. 2020. Unsupervised Detection of Microservice Trace Anomalies through Service-Level

Deep Bayesian Networks. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). 48–58.
https://doi.org/10.1109/ISSRE5003.2020.00014

[27] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly Detection from System Tracing Data Using Multimodal

Deep Learning. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). 179–186. https://doi.org/10.

1109/CLOUD.2019.00038

[28] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly Detection from System Tracing Data Using Multimodal

Deep Learning. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). 179–186. https://doi.org/10.

1109/CLOUD.2019.00038

[29] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. 2013. Using of

Jaccard coefficient for keywords similarity. In Proceedings of the international multiconference of engineers and computer
scientists, Vol. 1. 380–384.

[30] Opentelemetry. 2023. Opentelemetry. https://opentelemetry.io. Accessed: 2023/7/14.

[31] Opentelemetry. 2023. OpenTelemetry Collector. https://github.com/open-telemetry/opentelemetry-collector. [Online].

[32] Opentelemetry. 2023. Opentelemetry span-events concept. https://opentelemetry.io/docs/concepts/signals/traces/

#span-events. Accessed: 2023/7/14.

[33] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and Rebecca Isaacs. 2020. Distributed tracing in
practice: Instrumenting, analyzing, and debugging microservices. O’Reilly Media.

[34] Thomas W. Reps, Thomas Ball, Manuvir Das, and James R. Larus. 1997. The Use of Program Profiling for Software

Maintenance with Applications to the Year 2000 Problem. In 6th European Software Engineering Conference Held Jointly
with the 5th ACM SIGSOFT Symposium on Foundations of Software Engineering. 432–449.

[35] Jesus Rios, Saurabh Jha, and Laura Shwartz. 2022. Localizing and Explaining Faults in Microservices Using Distributed

Tracing. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD). 489–499. https://doi.org/10.1109/

CLOUD55607.2022.00072

[36] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)

network. Physica D: Nonlinear Phenomena 404 (2020), 132306.
[37] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,

and Chandan Shanbhag. 2010. Dapper, a large-scale distributed systems tracing infrastructure. (2010).

[38] Apache SkyWalking. 2023. Apache SkyWalking. https://skywalking.apache.org. Accessed July. 6, 2023.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

https://doi.org/10.1145/3132747.3132749
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/configure-cloudwatch-ec2-on-premises.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/configure-cloudwatch-ec2-on-premises.html
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://opentelemetry.io
https://github.com/open-telemetry/opentelemetry-collector
https://opentelemetry.io/docs/concepts/signals/traces/#span-events
https://opentelemetry.io/docs/concepts/signals/traces/#span-events
https://doi.org/10.1109/CLOUD55607.2022.00072
https://doi.org/10.1109/CLOUD55607.2022.00072
https://skywalking.apache.org

TraStrainer: Adaptive Sampling for Distributed Traces with System Runtime State 22:21

[39] Cindy Sridharan. 2018. Distributed systems observability: a guide to building robust systems. O’Reilly Media.

[40] TraStrainer. 2024. TraStrainer implementation. https://github.com/IntelligentDDS/TraStrainer. Accessed Feb. 20, 2024.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[42] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer: Decomposition transformers with auto-

correlation for long-term series forecasting. Advances in Neural Information Processing Systems 34 (2021), 22419–22430.
[43] Zihao Ye, Pengfei Chen, and Guangba Yu. 2021. T-Rank: A Lightweight Spectrum based Fault Localization Approach

for Microservice Systems. In CCGrid 2021. IEEE/ACM, 416–425. https://doi.org/10.1109/CCGrid51090.2021.00051

[44] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram, and Shankar Pasupathy. 2011. An

empirical study on configuration errors in commercial and open source systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. 159–172.

[45] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao Jing, Tianjun Weng, Xinmeng

Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End Latency Issue Localization with Extended Spectrum Analysis in

Microservice Environments. In WWW 2021. ACM, 3087–3098.

[46] Guangba Yu, Pengfei Chen, Pairui Li, TianjunWeng, Haibing Zheng, Yuetang Deng, and Zibin Zheng. 2023. LogReducer:

Identify and Reduce Log Hotspots in Kernel on the Fly. In ICSE 2023. 1763–1775.
[47] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. 2023. Nezha: Interpretable

Fine-Grained Root Causes Analysis for Microservices on Multi-Modal Observability Dat. In ESEC/FSE 2023. ACM, 1–1.

https://doi.org/10.1145/3611643.3616249

[48] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic Scaling for Microservices with an Online

Learning Approach. In ICWS 2019. IEEE, 68–75.
[49] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers effective for time series forecasting?. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 11121–11128.
[50] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang. 2022.

DeepTraLog: Trace-Log Combined Microservice Anomaly Detection through Graph-based Deep Learning. In ICSE
2022. IEEE, 623–634.

[51] Chenxi Zhang, Xin Peng, Tong Zhou, Chaofeng Sha, Zhenghui Yan, Yiru Chen, and Hong Yang. 2022. TraceCRL:

Contrastive Representation Learning for Microservice Trace Analysis. In ESEC/FSE 2022. ACM, 1221–1232.

[52] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan Mace. 2023. The Benefit of Hindsight: Tracing

{Edge-Cases} in Distributed Systems. In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). 321–339.

[53] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018.

Overload Control for Scaling WeChat Microservices. In SoCC 2018. ACM, 149–161.

[54] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. Fedformer: Frequency enhanced

decomposed transformer for long-term series forecasting. In International Conference on Machine Learning. PMLR,

27268–27286.

[55] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018. Fault analysis and debugging

of microservice systems: Industrial survey, benchmark system, and empirical study. IEEE Transactions on Software
Engineering 47, 2 (2018), 243–260.

[56] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2021. Fault Analysis and Debugging of

Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study. IEEE TSE 47, 2 (2021), 243–260.

[57] Zhenyi Zhu. 2022. Anomaly detection over time series data. (2022).

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 22. Publication date: July 2024.

https://github.com/IntelligentDDS/TraStrainer
https://doi.org/10.1109/CCGrid51090.2021.00051
https://doi.org/10.1145/3611643.3616249

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation
	2.3 Problem Formulation

	3 Overview
	4 Detailed Design
	4.1 Trace Encoder
	4.2 System Bias Extractor
	4.3 System-Biased Sampler
	4.4 Diversity-Biased Sampler
	4.5 Composite Sampler

	5 Experiment Evaluation
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 RQ1: Sampling Quality of TrasTrainer.
	5.5 RQ2: Effectiveness of TrasTrainer for Downstream Root Cause Analysis.
	5.6 RQ3: Contribution of the Combination of System Status and Trace Diversity.
	5.7 RQ4: Efficiency of TraStrainer.

	6 Limitations
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

