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Root cause analysis (RCA) for large-scale microservice systems is a crucial and challenging problem. Service

dependency graph and trace are two widely-used data sources in RCA. However, existing dependency-graph-

based RCA approaches lack in-depth analysis of individual requests. On the other hand, trace-structure-based

RCA approaches ignore anomalies across multiple traces. Moreover, most of existing RCA approaches fail to

provide fine-grained analysis. In this study, we present TraGraphRCA, a practical multi-level microservice

RCA approach that comprehensively combines the trace-structure-based analysis and graph-based analysis.

TraGraphRCA constructs multi-level trace template patterns and service dependency graphs in an offline

manner. During online analysis, TraGraphRCA utilizes both trace structure-status information and dependency

graph information to locate the root cause service instance and the specific root cause event. Experimental

results demonstrate that TraGraphRCA achieves a significantly higher average top-1 accuracy compared to

seven baseline methods on two datasets. Moreover, TraGraphRCA has been deployed in a large real-world

production system for 8 months and has been used to handle over 900 performance or reliability issues. It

achieves an accuracy of over 80% in RCA, and the analysis time is always lower than 3 minutes.

CCS Concepts: • Software and its engineering → Cloud computing; • General and reference →
Reliability; Performance.

Additional Key Words and Phrases: Root Cause Analysis, Multi-Level Diagnosis, Microservice
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1 Introduction
Microservice architecture has become the mainstream framework for developing and building

cloud-native applications. For industrial microservice applications, they typically consist of dozens

to thousands of services with multiple instances [42, 48]. Running in a highly uncertain and dynamic

environment, microservices inevitably suffer from reliability and performance issues [12, 45]. To
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TraGraphRCA

trace-structure-
based RCA

user
requests traces

communi-
cation
relation-
ship

non-communi-
cation
relation-
ship

trace structure-
  status info

dependency graph
info

dependency-graph-
based RCA

neglect anomalies
across multiple traces

Ignore Some
Crucial Issues

Fig. 1. Trace structure info and dependency graph info are combined to localize root causes in TraGraphRCA.

enable Site Reliability Engineers (SREs) to timely mitigate failures, it is desirable to automate root

cause analysis (RCA) from thousands of services within complex dependencies [43].

Service dependency graph shows the dependencies between services in applications, providing

rich context when assessing risks and understanding the system, which has been widely used

by SREs to diagnose failures [7, 22, 39, 41]. Recent researches [7, 10, 22, 36–38] use dependency-

graph-based approaches to locate root causes leveraging the abnormal edges between adjacent

microservices within the graph. However, suchmethods lack in-depth analysis focused on individual

requests, resulting in insufficient analysis, such as the ignorance of some crucial issues. As shown

in Fig. 1, some issues which only affect specific requests escape from RCA.

On the other hand, with the support of specifications such as OpenTelemetry [24] and Sky-

Walking [34], distributed tracing [33] has been widely adopted in industrial microservice systems.

Each trace records the end-to-end paths of requests across service instances and each operation

(i.e., service invocation). Traces have been widely used in RCA for microservice systems. Existing

trace-structure-based RCA approaches [20, 23, 29, 40, 45] locate the root causes by analyzing the

differences in structure or state information between abnormal traces and normal traces. Never-

theless, due to the complex dependencies and fault propagation patterns in microservice systems,

anomalies not only propagate within a single trace, but also across multiple traces [22], as shown

in Fig. 1. Therefore, existing approaches which neglect anomalies across multiple traces obtain

lower accuracy in practice (shown in § 4.2.1).

Moreover, existing dependency-graph-based and trace-structure-based RCA approaches are

limited in the fine-grained analysis of root causes, as dependency graphs or traces provide rich

information across service instances, but offer poor information within services. To obtain finer-

grained information, events are inserted into trace logic to involve the information within service

instances [26]. Therefore, incorporating events in RCA can help us obtain more detailed root cause

reports, thus speeding up the fault mitigation.

TraGraphRCA Approach. To pinpoint root causes of availability and performance issues

in microservice systems, we propose a practical multi-level RCA approach called TraGraphRCA.
The core idea of TraGraphRCA is to combine in-depth trace-structure-based analysis and overall

dependency-graph-based analysis to localize root causes at multiple levels. It comprises two main

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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phases, namely the construction phase and the diagnosis phase. In the construction phase, Tra-
GraphRCA collects trace data periodically at normal state. It extracts and aggregates information

from these trace data to build multi-level template patterns. Simultaneously, TraGraphRCA creates

a service dependency graph by considering both communication and non-communication relation-

ships among service instances. To enhance the efficiency of graph traversal, we store and maintain

the graph in the form of bitmaps [14].

During the diagnosis phase, Level-by-level Analyzer (§ 3.2) retrieves trace datawithin the abnormal

time window. It analyzes these trace data at service-span level and log-event level to mine the

difference pairs between expected patterns and violated patterns. Trace-Based Analyzer (§ 3.3)

then identifies suspicious spans based on the multi-level difference pairs. It also evaluates the

significance of each suspicious span through trace-based analysis. Finally, Graph-Based Analyzer
(§ 3.4) incorporates the results of trace-based analysis into the service dependency graph and

applies PageRank [27] algorithm for graph-based analysis. It ultimately provides a list of potential

root causes, which SREs can refer to for possible root cause service instances and specific root

cause events.

To validate the effectiveness and efficiency of TraGraphRCA, we constructed two datasets, one

from a large real-world production system and another from two widely-used microservices

benchmarks namely TrainTicket [6] and OnlineBoutique [8]. Experimental results demonstrate

that TraGraphRCA achieves significantly higher average top-1 accuracy (82.70%) compared to seven

baseline methods at both service level and event level. On average, it outperforms them from 39.01%

to 76.92%. In terms of practical application, TraGraphRCA has already been deployed in Huawei

Cloud for 8 months. It has been used to handle over 900 performance or reliability issues with an

accuracy of over 80%. SREs and developers have provided feedbacks that the analysis results from

TraGraphRCA have effectively helped them improve their efficiency and save on manpower cost.

Contributions. This study makes the following contributions.

• We propose a multi-level trace analysis method at service-span level and log-event level, which

not only identifies the root cause service instance but also provides specific root cause events.

• We propose a practical RCA approach called TraGraphRCA, which combines both trace-structure-

based analysis and dependency-graph-based analysis to localize root causes. The implementation

of TraGraphRCA is publicly available at [35].

• We constructed two datasets using 13 production microservice systems and 2 widely-used

microservices benchmarks to validate TraGraphRCA. Experimental results demonstrate the

effectiveness and efficiency of TraGraphRCA.
• We have deployed TraGraphRCA in Huawei Cloud for 8 months. During production operations,

TraGraphRCA handles over 900 issues and achieves an accuracy of over 80% in RCA with an

average analysis time less than 3 minutes.

2 Background and Motivation
2.1 Background
Trace information at service-span level. A trace comprises a series of service operations (spans)

interconnected through context propagation, forming a tree-like topology [32]. The structure of

a trace reflects which services involved in a request, as well as the order and hierarchy of their

invocations. Additionally, the status information on each span, such as call duration and return

status code, also provides crucial insights for subsequent analysis. However, the original trace

information can only provide coarse-grained information at service operation level.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Trace information at log-event level. In many end-to-end tracing tools (e.g., OpenTeleme-

try [24]), spans include log events [26], which can be seen as structured log messages with times-

tamps and event information. These events represent a series of meaningful sub-operations that

occur within a span. The finer-grained status information on events such as latency, execution

parameters and results helps us conduct in-depth RCA.

Dependency graph information. In production microservice systems, there are complex

dependencies between different microservices. These dependencies can be categorized into com-

munication relationships and non-communication relationships [22]. Communication relationships

can be obtained through network sockets or by aggregating multiple traces to build a call graph [41].

For systems using service mesh, the network components of the service mesh can also provide

communication relationship information [3]. Non-communication relationships typically involve

competition for a shared resource or concurrent access to configuration files [22]. This information

can be obtained by examining the deployment configuration of services and nodes. These depen-

dencies between services are usually stored and maintained in the form of a service dependency

graph, which is helpful for conducting RCA.

reviews-sz-
02

TraceID: f1042 SpanID: 5743 Inst: productpage-sz-01 Op: api/v1/productpage

TraceID: f1042 SpanID: 6609 Inst: reviews-sz-01 Op: api/v1/reviews

477

Time

TraceID: f1042 SpanID: 8251 Inst: details-sz-01 Op: api/v1/details

TraceID: f1042 SpanID: 9604 Inst: ratings-sz-01 Op: api/v1/ratings

Span

TimeStamp, Duration, EventInfo

Event

productpage-
sz-01

details-sz-
01

reviews-sz-
01

ratings-sz-
01

Op: /api/v1/
details

Span 5743

Span 6609

Span 9604

Span 8251

Op: /api/v1/
productpages

Op: /api/v1/
reviews

Op: /api/v1/
ratings

productpage-
sz-01

reviews-sz-
03

details-sz-
01

ratings-sz-
01

reviews-sz-
01

Communication
Relationship

Non-Communication
Relationship

(a) Trace Structure-Status Info at Service Level and Event Level (b) Trace Tree-like Structure (c) Service Dependency Graph

Fig. 2. An example of trace structure-status info and dependency graph info in a simple microservice system.

We provide a specific illustration of the two data sources(i.e., trace data and dependency graph)

used in our method through an example microservice system. This example microservice system

deploys Istio’s Bookinfo application [13] and includes four pods and three nodes. productpage-sz-01
is deployed on Node A, reviews-sz-01, reviews-sz-02, and reviews-sz-03 are on Node B, while details-
sz-01 and ratings-sz-01 are on Node C. Traces are generated and collected using the Opentelemetry

framework [25]. Fig. 2(a) displays trace data generated from a single request. It consists of a series of

spans, with events incorporated to enrich the information associated with each span. Microservice

instances on a trace are interconnected via spans, forming a tree-like topology as depicted in

Fig. 2(b). Aggregating multiple traces enables us to obtain communication-relationships within the

system (as denoted by the black lines in Fig. 2(c)). Additionally, based on the system’s deployment

configuration files, we can identify non-communication relationships in the system (as indicated

by the red lines in Fig. 2(c)).The rule for determining the direction of edges representing non-

communication relationships is as follows: it points from instances with low resource utilization to

those with high resource utilization.

2.2 Motivation
This section outlines the motivation behind our work, which aims to efficiently localize root causes

at multi-levels by integrating in-depth trace-based analysis with overall dependency graph analysis.

2.2.1 Motivation 1: Enhancing RCA through trace-graph fusion. We investigate and summa-

rize the extent of trace and graph analysis in current state-of-the-art RCA methods, as illustrated in

Table 1. Most methods only consider either trace-structure-based or graph-based analysis. Despite
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Table 1. Comparison of state-of-the-art RCA methods. The difference between “superficial” and “in-depth”
trace analysis lies in whether fine-grained information (i.e., events) is considered. “commu” denotes commu-
nication relationship.

Approach Trace Analysis Graph Analysis Analysis Level
Superficial In-depth Commu Non-commu

MicroRCA [38] % % " " Service

MicroScope [22] % % " " Service

MicroRank [41] " % " % Invocation

TraceAnomaly [23] " % % % Invocation

TraceRCA [21] " % % % Service

SBLD [30] % % % % Log

PDiagnose [11] " % % % Resource & Log

Eadro [16] " % " % Service

TraGraphRCA " " " " Service & Event

S1 S3

S2

S6 S7

S8S4

S5 S8 (MySQL-Server Pod)

S7 (Application Pod)

Node A

S1 S3

S2

S6 S7

S8S4

S5

Fault Free Noncomm-relationshipFault Suffering

Fig. 3. An example of the importance of combining trace and graph from real-world case.

MicroRank [41] and Eadro [16] tends to cover both aspects. Unfortunately, their trace analysis is

limited to just considering latency and graph analysis does not account for non-communication

relationships. We implemented seven of these methods (excluding Eadro due to its supervised

nature) and validated their RCA performance on two datasets. Our experimental results (§ 4.2.1)

demonstrated that neither the existing trace-structure-based nor the graph-based approaches can

provide satisfying RCA result.

We investigate a real-world issue from Huawei Cloud to further illustrate our point, as shown in

Fig. 3. During the fault-suffering phase, the actual root cause of the issue was an overload attack on

𝑆8 (a MySQL server pod), involving numerous requests containing full-table queries for 𝑆8. This

caused 𝑆8 to consume a significant portion of CPU resources on Node A, dramatically slowing down

𝑆7 (an application pod) that also runs on Node A. This slowdown resulted in a latency increase for

traces passing through 𝑆7.

For trace-structure-based approaches [21, 23], analyzing the differences between traces from

fault-free and fault-suffering phases enabled them to pinpoint issues with 𝑆7 and 𝑆8. However,

due to the lack of an overall analysis of the dependency graph, especially non-communication

relationships, they treated 𝑆7 and 𝑆8 as separate root causes, failing to integrate them together. On

the other hand, although graph-based approaches [22, 38] could identify relationships between
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① Level-by-Level Analyzer

Log-Event
Level Analyzer

Service-Span
Level Analyzer

Multi-Level
Result Fusioner

Service-Span
Level Result

Log-Event
Level Result

Multi-Level Template
Pattern Builder

Multi-Level
Template Pattern

② Trace-Based Analyzer

Suspicious
Span Miner

Trace-Based
Scorer

Dependency
Graph Builder

Trace-Graph
Combiner

PageRank
Scorer

③ Graph-Based Analyzer

Suspicious
Spans

Service Depen-
dency Graph

Trace-
Based Result

Multi-Level
Difference Pairs

Trace-
Combined

Graph

Diagnosis
Phase

Trace

Construct
Phase

Alert

Multi-Level
Root Cause

1 S7 [e15]

2 S8 [e5, e14]

3 S5 [e15]

Service 
Instance

Rank Suspicious
Events

Deployment
Infomation

Invocation
Relationship

Fig. 4. System overview of TraGraphRCA.

𝑆7 and 𝑆8, these methods which lack in-depth analysis focused on individual requests, could not

detect the abnormal full-table queries from 𝑆4 to 𝑆8, missing the actual root cause.

The analysis above motivates us to design a more effective RCA method that combines in-depth

trace-structure-based analysis and overall dependency-graph-based analysis, which aims not only

to pinpoint root causes comprehensively but also to accurately coverage them.

2.2.2 Motivation 2: Localizing root cause at multi levels. Table 1 also shows the RCA level

of the current approaches. Most of them identify root causes at the service level, lacking diagnostic

details within the service. While SBLD [30] and PDiagnose [11] pinpoint the error logs, they are

limited to specific types of logs. We emphasize the importance of providing fine-grained diagnostic

results in the RCA process. For instance, consider 𝑆8 in Fig. 3, which handles an average of 50,000

requests per hour, resulting in more than 3,000,000 events. Even after identifying the root cause

service (𝑆8), SREs still face a significant challenge in pinpointing the specific root cause events (i.e.,

the full table query SQL events). Hence, a multi-level root cause analysis involving services and

events is essential to automate this process.

2.3 Problem Formulation
We formalize the problem of multi-level RCA in a microservice system by combining trace and

graph information as follows. Given a time window W (default 5 minutes) at normal system

states, we collect the sets of traces 𝑇 = {𝑇1, ...,𝑇𝑡 } and log events 𝐸 = {𝐸1, ..., 𝐸𝑒 }. Each log event

𝐸𝑖 is associated with a trace ID and a corresponding trace 𝑇𝑗 . We first aggregate the normal trace

at service-span level and log-event level, constructing cross-level normal template patterns T .

Additionally, we build a service dependency graph G based on the service communication and

non-communication relationships, storing in the form of bitmaps.

When an alarm occurs in the microservice system, we obtain a set of suspicious traces 𝑇 ′ =
{𝑇 ′

1
, ...,𝑇 ′

𝑡 ′ } and events 𝐸′ = {𝐸′
1
, ..., 𝐸′

𝑒 } within a time window (e.g., 5 minutes). The primary

object of multi-level RCA is to determine the root cause service instances and log events of the

alarm. To achieve this object, we formalize multi-level RCA based on a parameterized model

F : (T ,G,𝑇 ′, 𝐸′) → (S,L), where S represents the root cause service instances and L represents

the root cause log events.

3 Methodology
Motivated by the above motivations, we propose a practical multi-level RCA approaches, namely

TraGraphRCA, which combine both in-depth trace-structure-based analysis and dependency-graph-

based analysis to localize root causes. Fig. 4 shows the overall architecture of TraGraphRCA,
containing two phases: construct phase and diagnose phase. In construct phase, TraGraphRCA

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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constructs multi-level normal template patterns and dependency graph from normal traces and

configuration files. In diagnose phase, TraGraphRCA has three main parts: 1○Level-by-level Analyzer,
2○Trace-Based Analyzer and 3○Graph-Based Analyzer.

3.1 The Construction Phase
In construction phase, we first obtain all traces and events within a time windowW in the fault-free

phase of the system. Obtaining normal data from a fault-free time window is easy because most of

the time of production environment is in a fault-free phase [19].

Construct normal template patterns. During the fault-free phase, we cluster and extract trace
template patterns at both the service and event levels to model the system’s normal behavior. (1) At

service-span level, traces with the same service-span tree structure (described in 2.1) are grouped

into a cluster. This tree structure serves as the basis for the corresponding extracted template pattern

for that cluster. Additionally, we calculate the upper bound for the normal duration of each span

based on the traces used to build these patterns. We utilize the 3-𝜎 principle [17], commonly used

for outlier detection [22, 41], to compute this normal upper bound, represented as 𝑢𝑏𝑠 = 𝜇0 + 3 ∗ 𝜎0,
where 𝜇0 denotes to the average duration, and 𝜎0 represents the standard deviation. This upper

bound is then attached to the template pattern. The green part of Fig. 5 illustrates the process

of constructing service-span level template patterns. (2) At log-event level, we aggregate event

sequences occurring on the same span in traces. The resulting template pattern records the possible

events at each position in the event sequence. Similar to the service-span level pattern, we also

calculate the duration upper bound for each event using the 3-𝜎 principle, denoted as 𝑢𝑏𝑒 . The

green part of Fig. 6 illustrates the process of constructing log-event level template patterns.

Construct service dependency graph. During the construction phase, we gather communi-

cation relationships between services by aggregating trace data, and obtain non-communication

relationships from Configuration Management Database (CMDB). Based on these relationships,

we build a service dependency graph, as described in 2.1. To improve the efficiency, we store and

maintain the graph in the form of bitmaps [14].

3.2 Level-by-Level Analyzer
During the fault-suffering phase, traces would exhibit structural or state information differences

compared to traces from the fault-free phase. For example, in Fig. 5, 𝑝𝑠𝑡1 shows a broken link,

and the span on 𝑝𝑠𝑡3 experiences increased delay. These differences serve as crucial evidence for

RCA. To capture them, Level-by-Level Analyzer conducts analysis on suspicious traces at both the

service-span level and log-event level. At each level, Level-by-Level Analyzer extracts information

from each suspicious trace to generate suspicious pattern 𝒑𝑡 , and matches it with the corresponding

normal template pattern 𝒑𝑛 . It then detects the differences between 𝒑𝑡 and 𝒑𝑛 , and outputs the

difference pairs 𝑫 for further analysis.

3.2.1 Service-Span Level Analyzer. At this level, we focus on service instances involved in

traces and their invocations (spans).

Get matched template pattern at service-span level. In the diagnosis phase, we extract the

service-span level pattern 𝑝𝑠𝑡 from each suspicious trace in a manner similar to the construction

phase. We then find the most similar normal template pattern that matches 𝑝𝑠𝑡 . Due to anomalies

in the microservice system, the suspicious trace may undergo structural changes, such as broken

links, we cannot always find a normal template pattern that exactly matches the suspicious trace

pattern. To assess the degree of similarity between two service-span level patterns, we define the

service-span Jaccard similarity.
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Fig. 5. Comparison between the service-span structure of the suspicious trace and the constructed normal
template.

Definition 1 (Service-Span Jaccard Similarity 𝐽𝑠 ). For suspicious pattern 𝑝𝑠𝑡 and normal
template pattern 𝑝𝑠𝑛 , we denote the set of spans for 𝑝

𝑠
𝑡 as 𝑆𝑃𝑡 and the set of spans for 𝑝

𝑠
𝑛 as 𝑆𝑃𝑛 . Their

service-span Jaccard similarity is calculated as 𝐽𝑆 (𝑝𝑠𝑡 , 𝑝𝑠𝑛) =
|𝑆𝑃𝑡∩𝑆𝑃𝑛 |
|𝑆𝑃𝑡∪𝑆𝑃𝑛 | .

For example, in Fig. 5, the intersection of 𝑝𝑠𝑡1 and 𝑝
𝑠
𝑛1 spans is {(𝑆1 → 𝑆2), (𝑆2 → 𝑆4)}, the union

of spans is {(𝑆1 → 𝑆2), (𝑆2 → 𝑆3), (𝑆2 → 𝑆4)}. Therefore, their service-span Jaccard similarity 𝐽𝑆 is

2

3
. Similarly, the 𝐽𝑆 between 𝑝𝑠𝑡1 and 𝑝𝑠𝑛2 is

1

3
. Therefore, 𝑝𝑠𝑛1 is the most closely matched normal

template pattern for 𝑝𝑠𝑡1.

Mine difference pairs at service-span level. Once the most closely matched template pattern

𝑝𝑠𝑚 of suspicious pattern 𝑝𝑠𝑡 is found, we examine the structural differences and duration differences

between 𝑝𝑠𝑡 and 𝑝
𝑠
𝑚 . (1) Structural differences refer to spans at the same position where 𝑝𝑠𝑡 and 𝑝

𝑠
𝑚

differ (such as 𝑝𝑠𝑡1 and 𝑝
𝑠
𝑛1 in Fig. 5). (2) Duration differences refer to a matched span pair (𝑠𝑡𝑖 , 𝑠𝑚𝑖 )

between 𝑝𝑠𝑡 and 𝑝
𝑠
𝑚 , where the duration 𝑑

𝑡
𝑖 of 𝑠

𝑡
𝑖 exceeds the normal upper bound 𝑢𝑏𝑠𝑖 recorded by

𝑠𝑚𝑖 (such as 𝑝𝑠𝑡3 and 𝑝
𝑠
𝑛2 in Fig. 5). When differences are detected, we record a set of service-span

level difference pairs 𝐷𝑠 = {(𝑠𝑡
1
, 𝑠𝑚

1
), ..., (𝑠𝑡𝑛, 𝑠𝑚𝑛 )}. Regarding structural differences, it is possible for

one item in the difference pair to be empty. In such cases, we fill it with an empty value denoted as

𝒏.

3.2.2 Log-Event Level Analyzer. As mentioned in § 2.2.2, reporting root causes at the service-

span level is insufficient for SREs. To conduct a more detailed analysis, we examine the structure

and status information of log events (as described in § 2.1) on each span.

Mine difference pairs at log-event level. To analyze information at log-event level, we

compare the event sequence {𝑒𝑡
1
, ..., 𝑒𝑡𝑛} (e.g., {𝑒8, 𝑒3, 𝑒9} in Fig. 6) on suspicious trace 𝑝𝑠𝑡 with the

corresponding normal event template pattern (e.g., 𝑃𝑆2→𝑆3 ). As shown in Fig. 6, we analyze the

log-event differences in structure and duration as follows: (1) Structural difference refers to the

event 𝑒𝑡𝑖 that is not a part of the possible event set in template pattern (such as 𝑒8 and 𝑒9 of 𝑝
𝑠
𝑡1 not

in 𝑃𝑆2→𝑆3 ). (2) Duration difference arises when the duration of 𝑒𝑡𝑖 exceeds the upper bound recorded
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Fig. 6. Comparison between the log-event information of suspicious traces and the normal templates con-
structed during the construction phase (“*” indicates a latency increase).

Table 2. An example of trace-based analysis for Fig. 7.

Suspicious

Span

Support

𝐼SS 𝑆𝑐𝑜𝑟𝑒SS
Suspicious

EventsS𝑝E S𝑝V
𝑆1 → 𝑆3 2 1 0 0.33 [𝑒1]

𝑆3 → 𝑆6 1 2 1 1.33 [𝑒12, 𝑒13]

𝑆5 → 𝑆7 0 1 0 1 [𝑒15]

𝑆6 → 𝑆8 0 1 2 3 [𝑒5, 𝑒14]

on the template (such as 𝑒7 of 𝑝
𝑠
𝑡2). Once all differences are detected, we record a set of log-event

level difference pairs 𝐷𝑒 = {(𝑒𝑡
1
, 𝑒𝑚

1
), ..., (𝑒𝑡𝑛, 𝑒𝑚𝑛 )}.

3.2.3 Multi-level Result Fusion. After obtaining the difference pairs 𝐷𝑠 and 𝐷𝑒 at two levels, we

merge 𝐷𝑒 into 𝐷𝑠 as follows: For each 𝑑𝑠𝑖 (𝑠𝑡𝑖 , 𝑠𝑚𝑖 ) ∈ 𝐷𝑠 , we combine all 𝑑𝑒 𝑗 (𝑒𝑡𝑗 , 𝑒𝑚𝑗 ) ∈ 𝐷𝑒 that satisfy

𝑒𝑡𝑗 within the span 𝑠𝑡𝑖 to form a set 𝑺𝑒𝑖 , which is then merged into 𝑑𝑠𝑖 (𝑠𝑡𝑖 , 𝑠𝑚𝑖 ). This process results in
a multi-level difference pair 𝑑 (𝑠𝑒 , 𝑠𝑣, 𝑺𝑒 ), representing the transition of the fault-free phase template

pattern 𝑠𝑒 to the fault-suffering phase pattern 𝑠𝑣 , in other words, 𝑠𝑒 denotes the expected span

pattern and 𝑠𝑣 denotes the violated. The set 𝑺𝑒 records the differences at log-event level within
this span. We use 𝐷 to denote the set of all multi-level difference pairs mined by Level-by-Level

Analyzer.

3.3 Trace-Based Analyzer
After obtaining the difference pair set 𝑫 generated during the diagnosis phase, SREs need to

determine which differences are more likely to reflect the root cause. To address this, we designed

Trace-Based Analyzer, which leverages 𝑫 to uncover a set of suspicious span SS, and employs

trace-based analysis to score the likelihood of each suspicious span 𝒔𝒔 reflecting the actual root

cause.
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Fig. 7. Examples of difference pairs between template patterns and suspicious traces. “*” indicates a latency
increase.

3.3.1 Suspicious Span Miner. For difference pair 𝑑𝑖 (𝑠𝑒𝑖 , 𝑠𝑣𝑖 , 𝑺𝑒𝑖 ), we can extract the expected

span 𝑠𝑒𝑖 and the violated span 𝑠𝑣𝑖 . As shown in Fig.7, the spans enclosed by the green dashed

circle are the expected spans, while the spans enclosed by the red dashed circle are the violated

spans. We consider the set of all expected spans 𝑠𝑒𝑖 as the collection of suspicious spans, denoted

as SS = {𝒔𝒔1, ..., 𝒔𝒔𝑛}. These spans, which undergo changes during the diagnosis phase, likely

reflect the impact of anomalies on the system. Therefore, in Fig. 7, the suspicious span set is

SS = {𝑆1 → 𝑆3, 𝑆3 → 𝑆6, 𝑆5 → 𝑆7, 𝑆6 → 𝑆8}. For each suspicious span 𝒔𝒔, we identify its violated

events according to the event level information in the difference pair. The violated events are

considered as suspicious events on 𝒔𝒔. For example, in terms of 𝑆3 → 𝑆6 in Fig. 7, both 𝑒12 and 𝑒13
are considered as its suspicious events.

Definition 2 (Influence 𝐼 ). We use𝑈𝑡 to denote the upstream span set of suspicious span 𝒔𝒔 on
trace 𝑡 , and denote the violated span set on trace 𝑡 as𝑉𝑡 . The influence of 𝒔𝒔 is denoted as the maximum
of the number of violated spans in 𝑈𝑡 for each trace 𝑡𝑖 , i.e., 𝐼 (𝒔𝒔) =𝑚𝑎𝑥 ( |𝑈𝑡𝑖 ∩𝑉𝑡𝑖 |). We use ISS to
denote the influence set of all suspicious spans at diagnosis phase.

Definition 3 (Support 𝑠𝑝). Given the count set 𝐶𝑠 = {𝑐1, ..., 𝑐𝑘 } of a span pattern 𝑠 , where 𝑐𝑖
denotes 𝑠 occurs 𝑐𝑖 times on trace 𝑡𝑖 . The support 𝑠𝑝 (𝑠) of span pattern 𝑠 is the sum of the counts in all
traces, i.e., 𝑠𝑝 (𝑠) = ∑𝑘

𝑖=0 𝑐𝑖 . For a suspicious span 𝒔𝒔, let 𝒆 to be its expected pattern and let 𝒗 to be its
violated pattern. 𝑠𝑝 (𝒆) and 𝑠𝑝 (𝒗) denote the support of 𝒆 and 𝒗 at diagnosis phase, respectively. We
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use S𝑝E and S𝑝V to denote the support set of expected and violated pattern of all suspicious spans at
diagnosis phase, respectively.

After extracting suspicious spans, Suspicious Span Miner counts the occurrences of the expected
pattern and violated pattern of each suspicious span to calculate its support. It also counts the

number of violated spans upstream of each suspicious span to calculate its influence. Table 2

shows an example of calculating influences and supports in Fig. 7. For suspicious span 𝑆3 → 𝑆6, its

expected pattern occurs in one trace (𝑇𝑟𝑎𝑐𝑒4) and its violated pattern occurs in two traces (𝑇𝑟𝑎𝑐𝑒1
and 𝑇𝑟𝑎𝑐𝑒2) in diagnosis phase. Therefore, S𝑝E (𝑆3 → 𝑆6) = 1, S𝑝V (𝑆3 → 𝑆6) = 2. For calculation

of influence, suspicious span 𝑆3 → 𝑆6 does not have any violated spans upstream in 𝑇𝑟𝑎𝑐𝑒1, but

has one in 𝑇𝑟𝑎𝑐𝑒2. Thus we calculate 𝐼D (𝑆3 → 𝑆6) as the maximum of 0 and 1, which is equal to 1

3.3.2 Trace-Based Scorer. Trace-Based Scorer aims to assess the contribution of each suspicious

span to root cause diagnosis. It is built on two core ideas: (1) In the diagnosis phase, suspicious

spans that appear multiple times as violated pattern but rarely as expected pattern are more likely

to reflect the root cause. (2) Within an abnormal propagation chain, suspicious spans that have

more violated downstream (cause more spans to be violated) are more likely to reflect the root cause.

For each suspicious span 𝒔𝒔, Trace-Based Scorer compute its ranking score 𝑆𝑐𝑜𝑟𝑒SS as follows.

𝑆𝑐𝑜𝑟𝑒SS (𝒔𝒔) =
S𝑝V (𝒔𝒔)

S𝑝E (𝒔𝒔) + S𝑝V (𝒔𝒔) ∗ (1 + 𝐼SS (𝒔𝒔)) . (1)

The 𝑆𝑐𝑜𝑟𝑒SS (𝒔𝒔) of a suspicious span 𝒔𝒔 combines the two core ideas mentioned above to evaluate

its contribution to root cause diagnosis. We use multiplication (“ × ”) rather than addition(“ + ”) to

combine the two results since they are on different scales. As an example, in Fig. 7, a code exception

occurs on 𝑆8. From the figure, we can observe that the suspicious span 𝑆6 → 𝑆8 only exhibits

violation in the diagnosis phase without occurrence as an expected pattern. Additionally, on 𝑡𝑟𝑎𝑐𝑒2,

both upstream spans of 𝑆6 → 𝑆8 are violated. Intuitively, we can infer that 𝑆6 → 𝑆8 is more likely

to reflect the root cause. In terms of Trace-Based Scorer, 𝑆𝑐𝑜𝑟𝑒S (𝑆6 → 𝑆8) = 1

0+1 ∗ (1 + 2) = 3, which

is the highest score in the example.

3.4 Graph-Based Analyzer
The previous trace-based analysis provided the suspicious span set SS with suspicious events and

the trace-based 𝑆𝑐𝑜𝑟𝑒SS . However, as mentioned in section 2.2.1, trace-based analysis lacks the

exploration of overall dependencies between services, especially non-communication dependencies.

To solve this, we designed Graph-Based Analyzer to further analyzes the suspicious spans through

combining with the service dependency graph. Graph-Based Analyzer constructs a trace-combined

dependency graph and utilizes a custom PageRank [27] on it. It outputs a list of ranked root cause

service instances associated with the suspicious log events as multi-level root cause analysis results.

3.4.1 Trace-Graph Combiner. To combine trace and graph analysis, Graph-Based Analyzer
integrates the score of the suspicious span set 𝑆𝑐𝑜𝑟𝑒SS as edge weights into the service dependency

graph, resulting in a trace-combined service dependency graph.

Definition 4 (Trace-combined Service Dependency Graph𝐺T ). The trace-combined service
dependency graph 𝐺T = ⟨𝑉 , 𝐸⟩ is a directed graph consisting of 𝑛 nodes (service instances) and𝑚
edges (dependencies between instances). If there is a dependency from node 𝑠 to 𝑡 , the edge ⟨𝑠, 𝑡⟩ will
be included in 𝐸. If 𝑠 → 𝑡 is a suspicious span, the edge weight𝑤 ⟨𝑠,𝑡 ⟩ = 1 + 𝑆𝑐𝑜𝑟𝑒SS(𝑠→𝑡 ) ; otherwise,
𝑤 ⟨𝑠,𝑡 ⟩ = 1.

For example, in Fig. 8, the edge weight of ⟨𝑆1, 𝑆3⟩ is𝑤 ⟨𝑆1,𝑆3 ⟩ = 1 + 𝑆𝑐𝑜𝑟𝑒SS(𝑆1→𝑆3 ) = 1.33. On the

other hand, 𝑆1 → 𝑆4 and 𝑆8 → 𝑆7 are not suspicious spans, so their edge weight is 1.
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Fig. 8. An example of combining trace-based result and graph analysis to get a multi-level root cause report.

3.4.2 PageRank Scorer. After obtaining the trace-combined service dependency graph𝐺T , we
apply a customized PageRank [27] on 𝐺T to calculate the PageRank scores for each node. A𝑠𝑡 is

defined as the probability that a walk starting from 𝑠 terminates at 𝑡 , which reflects the importance

of 𝑡 with respect to 𝑠 . After considering the edge weights, the value of A𝑠𝑡 can be calculated by:

A𝑠𝑡 =

{
𝑤⟨𝑠,𝑡 ⟩∑
𝑤⟨𝑠,𝑂 (𝑠 )⟩

, 𝑡 ∈ 𝑂 (𝑠)
0, otherwise

, (2)

where 𝑂 (𝑠) denotes the out-neighbors of 𝑠 . All of the A𝑠𝑡 will be combined into the transition

matrix A. To avoid getting trapped in local traps [2], an escape matrix 𝑒 = [ 1
𝑛
, ..., 1

𝑛
] is incorporated

to allow for a probability of randomly jumping out, following previous approach [2]. Therefore,

the equation of the 𝑞th iteration in PageRank iterative process [27] is defined as:

v(𝑞) = 𝑑Av(𝑞−1) + (1 − 𝑑)e. (3)

where 𝑑 is the damping factor (0 ≤ 𝑑 ≤ 1, default 𝑑 = 0.85 in this paper), the solution v is initialized

as

[
1

𝑛
, . . . , 1

𝑛

]
. After each iteration, we are gradually approaching a more accurate estimation

of the final value. The outcome vector represents the scores assigned to each node in a ranked

order, e.g., the table on the right side of Fig. 8 shows the outcome after applying PageRank to the

trace-combined service dependency graph on the left.

Generate multi-level root cause analysis results. The ranking of service instances obtained

by PageRanker represents the likelihood of each instance being the root cause. Trace and graph

analysis are leveraged comprehensively. For example, in Fig. 8, 𝑆7 executes a slow SQL query,

causing a sudden increase in CPU usage on the node. 𝑆8 runs on the same node as 𝑆7, resulting in

the failure propagating to 𝑆8. Graph-Based Analyzer considers the non-communication dependency

from 𝑆8 to 𝑆7 and correctly identifies 𝑆7 as the top-ranked root cause node. If only trace-based

analysis is used, the root cause would easily be misattributed to 𝑆8, because it is at the end of the

trace and triggers multiple exceptions, resulting in the highest trace-based score. Ultimately, for

each root cause instance, TraGraphRCA attaches suspicious events from spans where this instance
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is a caller or callee to the root cause analysis report, yielding a multi-level root cause report from

which SREs can obtain root cause instances and specific root cause events.

4 Experimental Evaluation
To evaluate the effectiveness and efficiency of TraGraphRCA, we aim at answering the following

research questions (RQs).

• RQ1: How accurate is the multi-level root cause analysis of TraGraphRCA?
• RQ2: How much does the fusion of trace-structure-based analysis and dependency-graph-based

analysis contribute to the effectiveness of TraGraphRCA?
• RQ3: How efficient is the analysis of TraGraphRCA? To what extent does the use of bitmaps

improve its efficiency?

4.1 Experimental Setup
4.1.1 Dataset A Setup. Dataset A consists of 54 reliability or performance issues, involving 13

large-scale microservice systems (each system contains 284 services on average) and 1327 physical

nodes from Huawei Cloud. These issues occurred between April 2023 and June 2023. The types

of failures include CPU exhausted, memory exhausted, network delay, slow SQL execution, code

exception, and failed third-party package calls. The labeled root causes were identified by SRE

and domain-specific technical experts, using two levels of granularity: service-span and log-event.

The first level identifies the root cause node where the failure occurred, while the second level

captures the events reflecting the actual root cause during the failure period. The dataset was

collected through an Application Performance Management (APM) platform, including trace data

and relevant metrics(e.g., Average Response Time, QPS, Error Rate).

4.1.2 Dataset B Setup. Microservice Benchmark. Dataset B is based on two widely-used

open-source microservice systems, namely OnlineBoutique [8] and TrainTicket [6], which have

been extensively studied in previous research [5, 18, 41, 44, 46, 49]. OnlineBoutique is a web-based

e-commerce application consisting of 10 microservices implemented in various programming

languages and communicating with each other using gRPC. TrainTicket offers a railway ticketing

service that involves 45 services communicating through synchronous REST invocations and

asynchronous messaging.

Experimental Platform. We have deployed the OnlineBoutique and TrainTicket applications

on a Kubernetes [1] platform consisting of 12 virtual machines. Each virtual machine is equipped

with an 8-core 2.10GHz CPU, 16GB of memory, and runs on the Ubuntu 18.04 operating system. To

collect traces, we utilize Opentelemetry Collector [25], which stores them in Grafana Tempo [9].

Data Collection. To simulate latency and reliability issues in a microservice system, we utilized

Chaosblade [4] to inject a total of 56 faults into these two benchmark microservices. These faults

encompassed various types including CPU exhausted, memory exhausted, network delay, code

exceptions, and error returns. The ground truths refer to the known injected pods or code regions

and the types of faults injected. A summary of faults in our datasets is shown in Table 3. An

overview of our experimental datasets can be found in Table 4.

4.1.3 Baselines. We employ seven state-of-the-art methods as baselines, which consist of three

dependency-graph based approaches (i.e., MicroRCA [38], MicroScope [22], MicroRank [41]), two

trace-structure based approaches (i.e., TraceRCA [21], TraceAnomaly [23]), one log-event based ap-

proach (i.e., SBLD [30]), and onemethod that incorporates multi-modal data (i.e., PDiagnose [11]). To

evaluate the contribution of combining trace and graph, we create the two variants of TraGraphRCA
(i.e., TraGraphRCA w/o T , TraGraphRCA w/o G) and conduct ablation experiments [31].
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Table 3. Summary of faults in the datasets.

Fault Type Description Case
Number

CPU Exhausted

CPU Exhausted refers to a system failure caused by the depletion of available

CPU (Central Processing Unit) resources. This issue commonlyarises due to

misconfigurations or excessive processing demands.

17

Memory Exhausted

Memory Exhausted refers to a system failure caused by the depletion of

available memory resources. This situation commonly arises due to

misconfigurations, excessive data load, or software inefficiencies.

11

Network Delay

Network Delay occurs when there is a slowdown in the transmission of

network packets, which causes long latency. This can happen due to network

congestion or high traffic volume.

36

Error Return

Error Return refers to a situation where an application encounters errors and

return wrong responses. This can occur due to factors such as software bugs,

invalid input, or incorrect configurations

8

Code Exception

Code Exception refers to a scenario where a software program encounters

unexpected conditions or situations during its execution, leading to an

interruption in the normal flow of the program.

8

Failed Third-party

Package Calls

Failed Third-party Package Calls occur when an application attempts to utilize

external libraries or packages but encounters errors or failures during

the execution of these calls.

6

Slow SQL Execution

Slow SQL Execution refers to a situation where database queries take an

unusually long time to process. This issue can arise due to an overload

attack, poorly optimized queries, or high server loads.

14

Table 4. Experiment datasets overview.

Dataset Microservice
Benchmark

Trace
Number

Fault
Number

Fault Type
Number

Dataset A 13 Production

Microservice systems

792,403 54 6

Dataset B OnlineBoutique and

TrainTicket

114,036 56 5

For the baseline implementations, MicroRank [41], TraceRCA [21], TraceAnomaly [23], and

PDiagnose [11] offer open-source versions that we directly utilize. MicroRCA [38], MicroScope [22],

and SBLD [30] lack open-source implementations, prompting us to create our own versions. To

ensure accuracy, we closely adhere to the methods described in related papers and employ the

exact libraries they used. For SBLD and PDiagnose, methods requiring log data sources, we treat

log events on traces as the input log data. Considering that they are designed to pinpoint error logs

rather than trace events, their results would be determined to be correct if their output error logs

lie in the root cause events. The details of the seven baselines are as follows.

• MicroRCA [38] is a dependency-graph based approach that utilizes the PageRank algorithm to

identify suspicious services by analyzing extracted abnormal subgraphs.

• MicroScope [22] is a dependency-graph based approach that identifies root causes by analyzing

the correlation of metrics within a dependency framework.

• MicroRank [41] is a mainly dependency-graph based approach that combines the personalized

Pagerank method with the Spectrum method to locate suspicious root causes. It utilizes traces

only to examine latency and does not conduct analysis on individual requests.
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• TraceRCA [21] is a trace-structure based approach that identifies root cause services by analyzing

the proportion of normal and abnormal traces on services and calculating the in-set score.

• TraceAnomaly [23] is a trace-structure based approach that utilizes deep learning to offline learn

normal trace patterns and online detect abnormal traces for root cause analysis.

• SBLD [30] is a log-event based approach that utilizes Spectrum algorithms to identify root cause

log events.

• PDiagnose [11] takes metrics, traces, and logs as inputs, converts them into time series, and

identifies the root cause by voting for the abnormal time series.

The two variants of TraGraphRCA are implemented as follows.

• TraGraphRCA w/o T is the variant that only performs dependency-graph based analysis with a

modification to simulate random walks by using an equal probability transition instead of the

trace-score-based node transition strategy.

• TraGraphRCA w/o G is the variant that solely relies on trace-structured based analysis result

without traversing the dependency graph.

4.1.4 Evaluation Metrics. To assess the effectiveness of TraGraphRCA’s multi-level analysis, we

utilized the following four metrics, where 𝐼 is the set of latency or reliability issues.

• Top-k accuracy (𝐴@𝑘) represents the probability that the true root cause is included in the

top-k positions of the results. Let 𝑟𝑐𝑖 be the root cause of the i-th issue, 𝑅𝑎𝑛𝑘𝑘𝑖 be the top-k result

list for the 𝑖th issue. 𝐴@𝑘 is calculated as: 𝐴@𝑘 = 1

|𝐼 |
∑ |𝐼 |

𝑖=1

(
𝑟𝑐𝑖 ∈ Rank

𝑘
𝑖

)
. We use 𝐴𝑆@𝑘 and

𝐴𝐸@𝑘 to represent the top-k accuracy at the service level and the event level, respectively.

• Mean reciprocal rank (𝑀𝑅𝑅) represents the inverse of the rank of the first identified root cause.
If the actual root cause is not present in the result list, its reciprocal rank is considered to be zero.

Let 𝑟𝑖 be the rank of the root cause in the returned list for the 𝑖th issue. The calculation for𝑀𝑅𝑅

is: 𝑀𝑅𝑅 = 1

|𝐼 |
∑ |𝐼 |

𝑖=1
1

rs 𝑖
. We use 𝑀𝑅𝑅𝑆 and 𝑀𝑅𝑅𝐸 to represent the mean reciprocal rank at the

service level and the event level, respectively.

4.2 Evaluation Results
4.2.1 RQ1: Effectiveness of TraGraphRCA at multiple levels. Effectiveness at service-
span level. Table 5 shows the effectiveness evaluation results of different approaches for root

cause analysis at service-span level. From Table 5, it is evident that TraGraphRCA outperforms

other baseline methods across all three metrics on both datasets. The remarkable accuracy of

TraGraphRCA in identifying root causes at the service-span level can be attributed to its integration

of trace-structure-based analysis and dependency-graph-based analysis. Unlike other methods that

mostly only conduct single-dimensional analysis, TraGraphRCA takes into account more factors,

resulting in superior analysis effectiveness.

After a detailed analysis of the root cause analysis results from various methods, we have

reached further conclusions. For trace-structure-based methods like TraceRCA and TraceAnomaly

(with an average𝑀𝑅𝑅𝑆 of 0.51) conduct individual analysis of trace structures but lack the ability

to uncover non-communication relationships and thus unable to identify resource consumption

anomalies. For dependency-graph-based methods like MicroScope, MicroRCA, and MicroRank

(with an average𝑀𝑅𝑅𝑆 of 0.43), they excel at analyzing anomalies that propagate across service

dependencies. However, these methods fail to detect exceptions caused by code exceptions that

break the trace chain, leading to inaccurate root cause identification. SBLD (with an average𝑀𝑅𝑅𝑆

of 0.52) analyzes events from a spectrum perspective but also falls short in recognizing resource

consumption anomalies. PDiagnose (with an average𝑀𝑅𝑅𝑆 of 0.58) integrates multi-modal data
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Table 5. Comparison of baselines at service-span level.

Approach

DataSet A DataSet B
𝐴𝑆@1 𝐴𝑆@3 𝑀𝑅𝑅𝑆 𝐴𝑆@1 𝐴𝑆@3 𝑀𝑅𝑅𝑆

MicroRCA [38] 29.63 57.41 0.4607 17.86 32.14 0.2054

MicroScope [22] 50.00 79.63 0.6578 25.00 39.29 0.2976

MicroRank [41] 42.59 77.78 0.6056 25.00 53.57 0.3690

TraceRCA [21] 48.15 72.22 0.6328 28.57 42.86 0.3512

TraceAnomaly [23] 51.85 81.48 0.6820 32.14 46.43 0.3750

SBLD [30] 55.56 75.93 0.6615 28.57 53.57 0.3869

PDiagnose [11] 50.00 77.78 0.6550 39.29 64.29 0.5000

TraGraphRCA w/o T 61.11 88.89 0.7472 35.71 53.57 0.4286

TraGraphRCA w/o G 62.96 81.48 0.7519 67.86 71.43 0.6905

TraGraphRCA 85.19 94.44 0.8967 82.14 92.86 0.8851

for analysis. However, its performance in Dataset B with an 𝐴𝑆@1 below 40% could be attributed

to its simplistic voting mechanism used for ranking.

Effectiveness at log-event level. At log-event level, we chose SBLD and PDiagnose as baselines

because only these two approaches can perform root cause analysis at the log-event level. Table 6

shows the effectiveness of different approaches in root cause analysis at log-event level on both

datasets. It can be observed that TraGraphRCA outperforms baselines across all the three metrics.

Specifically, TraGraphRCA achieves an 𝐴𝐸@1 of over 75%. This superior performance is attributed

to its multi-level analysis of traces and the incorporation of dependency graphs for RCA.

On the other hand, SBLD locates root causes based on the frequency of abnormal events. However,

in real-world scenarios, non-root cause nodes can also generate a significant number of faulty events

due to fault propagation, leading to lower accuracy in SBLD’s root cause localization. PDiagnose,

in Dataset A, exhibits low 𝐴𝐸@1 and 𝐴𝐸@3 values, both below 10%. This could be attributed to

the fact that Dataset A consists of fault data from a large-scale production microservice system

with complex service dependencies. PDiagnose does not analyze service dependencies and relies

solely on a voting mechanism for root cause prioritization, resulting in lower accuracy in root

cause localization.

Conclusion. It is clear that TraGraphRCA outperforms the baselines across various metrics at

both the two level. At the service-span level, TraGraphRCA an average improvement of 39.01%

to 59.92% in 𝐴𝑆@1. At log-event level, TraGraphRCA demonstrates an average improvement of

61.54% to 76.92% in 𝐴𝐸@1 compared to the baseline method. The practical application results

demonstrated in Appendix 7 also illustrate its excellent effectiveness.

4.2.2 RQ2: Contribution of the Combination of Trace and Graph. The last three rows of
Table 5 and Table 6 demonstrate the results of the ablation experiments [31]. It is evident that

TraGraphRCA achieves the best results across all metrics, indicating that both dependency-graph

based analysis and trace-structured based analysis contribute to better root cause analysis.

After a thorough analysis of the results from both variants of root cause analysis, we have drawn

further conclusions. On average, TraGraphRCAw/o G demonstrates higher accuracy in pinpointing

the root cause compared to TraGraphRCA w/o T . This is due to the utilization of multi-level

analysis in trace-based analysis, allowing for more fine-grained diagnostics of common root causes

such as network delay and code exceptions. However, when it comes to cross-trace propagated
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Table 6. Comparison of baselines at log-event level.

Approach

DataSet A DataSet B
𝐴𝐸@1 𝐴𝐸@3 𝑀𝑅𝑅𝐸 𝐴𝐸@1 𝐴𝐸@3 𝑀𝑅𝑅𝐸

SBLD [30] 19.23 57.69 0.4212 16.07 35.71 0.1976

PDiagnose [11] 3.85 7.69 0.0608 17.86 37.50 0.2243

TraGraphRCA w/o T 57.69 69.23 0.6577 19.64 39.29 0.2742

TraGraphRCA w/o G 61.54 65.38 0.6454 66.07 67.86 0.5963

TraGraphRCA 80.77 92.31 0.8623 78.57 89.29 0.8364
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Fig. 9. The efficiency with and without use of bitmaps.

anomalies like resource shortages, TraGraphRCAw/o T performs better. This is because the service

dependency graph captures the dependencies between services, including non-communication

relationships. This finding further validates the motivation, as described in § 2.2.1, of combining

trace and graph to enhance the effectiveness of root cause analysis.

4.2.3 RQ3: Efficiency of TraGraphRCA and Contribution of bitmaps. Efficiency is a crucial

factor in determining the applicability of root cause analysis algorithms in real-world production.

The efficiency of TraGraphRCA in root cause analysis heavily relies on the number of spans within

the diagnosis phase. To analyze the efficiency and scalability of TraGraphRCA with different span

sizes, we conducted an experiment to observe the changes in diagnosis time as the span number

increased. Additionally, we performed an ablation experiment [31] to validate the contribution

of using bitmaps [14] to maintain the dependency graph. It is important to note that the time

taken to construct template patterns and dependency graph was not included in the diagnosis time

calculation, because the construction of these two components is incrementally performed during

the normal operation of the system and they can be reused multiple times during the diagnosis

process.

Fig. 9 shows the significant improvement in the root cause analysis efficiency of TraGraphRCA
compared to TraGraphRCA w/o bitmaps. The use of bitmaps reduces the diagnosis time of Tra-
GraphRCA by an average of 99.19% across both datasets. Furthermore, we observe that the diagnosis

time of TraGraphRCA w/o bitmaps exhibits exponential growth, while the diagnosis time of Tra-
GraphRCA with bitmaps shows linear growth. This demonstrates the improved scalability of

TraGraphRCA.
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5 Related Work
In the following, we provide a brief summary of existing approaches.

Trace-structure-based approaches. These methods typically analyze the structures of the

traces corresponding to normal and abnormal requests separately, and localize the root cause

based on their differences. TraceAnomaly [23] utilizes deep Bayesian networks to offline learn

normal trace patterns and online detect and locate root causes. Pinpoint [15] aggregates traces

to learn and dynamically update a normal behavior pattern of the application, and detects faults

by comparing new requests with it. TraceCRL [47] utilizes contrastive learning and graph neural

network methods to encode the structural and state information of each trace into vector and

applies them to downstream analysis. FSF [29] leverages knowledge of failure propagation and

the client-server model of communication to infer root causes. However, due to complex fault

propagation patterns in systems, these methods cannot comprehensively analyze dependencies,

especially lack the ability to deal with anomalies that propagate across traces.

Dependency-graph-based approaches. These methods typically start by mining the rela-

tionships among services to construct a dependency graph. They then traverse this graph to

detect and recommend root causes. MicroScope [22] obtains network dependency through socket

communication and recommends root causes with the similarity between anomalous nodes and

frontend nodes. MicroRank [41] focus on latency issues and ranks root causes through combining

PageRank and spectrum analysis. Sage [7] employs causal Bayesian networks to characterize the

dependencies between microservices and uses graphical variational autoencoders to locate root

causes. ImpactTracer [39] constructs an impact graph to describe fault propagation paths and

utilizes a backward tracing algorithm to find root causes. However, these methods do not leverage

the fine-grained information in traces, causing some issues which only affect specific requests

escape from RCA.

Machine-learning-based approaches. These methods rely on historical or fault-injected

labeled data. They construct a supervised model that determines root causes based on matching

error representations from the historical data. MEPFL [50] and TFI [28] inject faults and collects

fault traces in a test environment, and train a predictive model using supervised methods to locate

root causes.

Putting TraGraphRCA in perspective. Compared to Machine-learning-based approaches,

TraGraphRCA uses an unsupervised algorithm that does not require labeled data, making it an easily

applicable algorithm in real-world microservice scenarios. TraGraphRCA combines the strengths of

both trace-based approaches and graph-based approaches by finely mining the structural and status

of traces at a microscopic level and analyzing the overall service dependencies at a macroscopic

level. It provides a multi-level diagnostic report, achieving better diagnostic performance.

6 Threats to Validity
The threats to validity mainly come from the data quality used to construct the normal trace

templates. If there are too many abnormal trace data included in the trace data during construction

phase, it will result in the extraction of incorrect patterns and abnormal calculation results of

statistical measures. This leads to incorrect matches during the diagnosis phase. On the other hand,

if the trace data during the construction phase covers too few normal patterns, it will also result

in the failure to correctly match the normal templates during the detection phase. Both of these

situations can affect the accuracy of root cause analysis. During the actual deployment process,

the normal patterns of TraGraphRCA is constructed incrementally, allowing the templates to be

promptly updated to cover more normal patterns. Additionally, the trace data used for building
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Fig. 10. The dependency relationship of a real-world case.

normal templates is preliminarily filtered based on trace indicators, aiming to exclude abnormal

trace data as much as possible. These approaches help alleviate the aforementioned threats.

7 Practical Application
7.1 Overview
TraGraphRCA has been running in Huawei Cloud for 8 months and used to handle over 900

performance or reliability issues. Prior to using TraGraphRCA, SREs had tomanually locate problems

by reviewing alert panels and analyzing metric and trace information for large-scale interfaces.

On average, it took them 3 hours to identify the root cause of a production environment failure.

However, since implementing TraGraphRCA, the algorithm automatically provides multi-level root

cause analysis results, helping SREs and developers narrow down the scope of investigation. Now,

they can typically identify the root cause within 3 minutes. The accuracy of TraGraphRCA’s root
cause analysis exceeds 80% in real-world business scenarios. SREs and developers have provided

feedbacks that TraGraphRCA’s results have significantly improved their efficiency and saved

manpower costs.

7.2 A Real-world Case
We introduce a real-world case to illustrate the root cause analysis process of TraGraphRCA.

In a microservices system that equipped with the TraGraphRCA tool, traces, events, and configu-

ration files collected by agents during normal operation are sent to TraGraphRCA. TraGraphRCA
dynamically constructs and updates multi-level trace templates and service dependency graph,

persistently storing them. Users configure SLIs (Service Level Indicators) and other alert thresholds

for their business applications. At a certain point, the system generates a significant number of

alerts, triggering TraGraphRCA to perform root cause analysis.

During the diagnosis phase, TraGraphRCA collects traces and events, conducting in-depth trace-

based analysis. It discovers traces passing through 𝑆1, 𝑆2, and 𝑆3 (application services) experiencing

significant latency delays, with some requests returning incorrect status codes. Simultaneously,

it identifies numerous abnormal events in traces passing through 𝑆8, indicating the generation

of a large number of threads. Next, TraGraphRCA proceeds with graph-based analysis, revealing

communication relationships between 𝑆1, 𝑆2, and 𝑆3, as well as a non-communication relationship

between 𝑆3 and 𝑆8. After ranking with PageRanker, TraGraphRCA recommends 𝑆8 as the top-ranked

root cause, pinpointing the abnormal events related to the excessive thread generation.

SREs quickly investigate 𝑆8 based on the result of TraGraphRCA and confirm that the actual

root cause was indeed the abnormal excessive thread generation in 𝑆8. This led to the thread pool

reaching its limit, causing anomalies in 𝑆3, which also need to acquire threads from the thread pool,

and further propagated the issue to 𝑆1 and 𝑆2 through their call relationships, as shown in Fig. 10.

In this example, TraGraphRCA successfully identified the genuine root causes, both at the service

and event levels, significantly reducing the analysis time for SREs.
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8 Conclusion
In this study, we present TraGraphRCA, a practical multi-level RCA approach that facilitates more

detailed root cause reports for SREs. The core idea of TraGraphRCA is to combine both trace-

structure-based and dependency-graph-based analysis to localize root causes at multi levels. To

validate the effectiveness and efficiency of TraGraphRCA, we constructed two datasets, one from

real production microservice systems and another from two widely-used microservices benchmarks

namely TrainTicket and OnlineBoutique. Experimental results demonstrate that TraGraphRCA
achieves significantly higher average top-1 accuracy (82.70%) compared to seven baseline methods.

Moreover, TraGraphRCA has been deployed in Huawei Cloud for 8 months and achieves an accuracy

of over 80% in root cause analysis.
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